Abstract:
An integrated device package is disclosed. The integrated device package can include a package housing that defines a cavity. The integrated device package can include an integrated device die that is disposed in the cavity. The integrated device die has a first surface includes a sensitive component. A second surface is free from a die attach material. The second surface is opposite the first surface. The integrated device die include a die cap that is bonded to the first surface. The integrated device package can also include a supporting structure that attaches the die cap to the package housing.
Abstract:
An integrated device package is disclosed. The package can include a carrier, such as first integrated device die, and a second integrated device die stacked on the first integrated device die. The package can include a buffer layer which coats at least a portion of an exterior surface of the first integrated device die and which is disposed between the second integrated device die and the first integrated device die. The buffer layer can comprise a pattern to reduce transmission of stresses between the first integrated device die and the second integrated device die.
Abstract:
Various low stress compact device packages are disclosed herein. An integrated device package can include a first integrated device die and a second integrated device die. An interposer can be disposed between the first integrated device die and the second integrated device die such that the first integrated device die is mounted to and electrically coupled to a first side of the interposer and the second integrated device die is mounted to and electrically coupled to a second side of the interposer. The first side can be opposite the second side. The interposer can comprise a hole through at least the second side of the interposer. A portion of the second integrated device die can extend into the hole.
Abstract:
An integrated device die and package is disclosed. The integrated device die includes a unitary body. The unitary body can have an upper portion comprising one or more active components. The upper portion can have first and second opposing lateral sides defining at least a portion of a periphery of the upper portion such that an upper surface of the upper portion is disposed between upper edges of the first and second opposing lateral sides. The unitary body can also have a lower portion monolithically formed with the upper portion. The lower portion can comprise a pedestal extending downwardly from the upper portion. The pedestal can be laterally inset from lower edges of the first and second opposing lateral sides. The pedestal can include a distal end portion configured to couple to a carrier.
Abstract:
A MEMS lead frame package body encloses a MEMS device enclosed in an internal cavity formed by the mold body and cover. A conductive internal shell with a connection window sits in the cavity. The MEMS device is mounted in the shell and electrically coupled to the lead frame through wire bonds directed through the connection window. To accommodate a MEMS microphone, an acoustic aperture extends through the mold body aligned with a hole in the internal shell.
Abstract:
An integrated device die and package is disclosed. The integrated device die includes a unitary body. The unitary body can have an upper portion comprising one or more active components. The upper portion can have first and second opposing lateral sides defining at least a portion of a periphery of the upper portion such that an upper surface of the upper portion is disposed between upper edges of the first and second opposing lateral sides. The unitary body can also have a lower portion monolithically formed with the upper portion. The lower portion can comprise a pedestal extending downwardly from the upper portion. The pedestal can be laterally inset from lower edges of the first and second opposing lateral sides. The pedestal can include a distal end portion configured to couple to a carrier.
Abstract:
Various embodiments of an integrated device package are disclosed herein. The package may include a leadframe having a first side and a second side opposite the first side. The leadframe can include a plurality of leads surrounding a die mounting region. A first package lid may be mounted on the first side of the leadframe to form a first cavity, and a first integrated device die may be mounted on the first side of the leadframe within the first cavity. A second integrated device die can be mounted on the second side of the leadframe. At least one lead of the plurality of leads can provide electrical communication between the first integrated device die and the second integrated device die.
Abstract:
An integrated device die and package is disclosed. The integrated device die includes a unitary body. The unitary body can have an upper portion comprising one or more active components. The upper portion can have first and second opposing lateral sides defining at least a portion of a periphery of the upper portion such that an upper surface of the upper portion is disposed between upper edges of the first and second opposing lateral sides. The unitary body can also have a lower portion monolithically formed with the upper portion. The lower portion can comprise a pedestal extending downwardly from the upper portion. The pedestal can be laterally inset from lower edges of the first and second opposing lateral sides. The pedestal can include a distal end portion configured to couple to a carrier.
Abstract:
Various embodiments of an integrated device package are disclosed herein. The package may include a leadframe having a first side and a second side opposite the first side. The leadframe can include a plurality of leads surrounding a die mounting region. A first package lid may be mounted on the first side of the leadframe to form a first cavity, and a first integrated device die may be mounted on the first side of the leadframe within the first cavity. A second integrated device die can be mounted on the second side of the leadframe. At least one lead of the plurality of leads can provide electrical communication between the first integrated device die and the second integrated device die.
Abstract:
An integrated device die and package is disclosed. The integrated device die includes a unitary body. The unitary body can have an upper portion comprising one or more active components. The upper portion can have first and second opposing lateral sides defining at least a portion of a periphery of the upper portion such that an upper surface of the upper portion is disposed between upper edges of the first and second opposing lateral sides. The unitary body can also have a lower portion monolithically formed with the upper portion. The lower portion can comprise a pedestal extending downwardly from the upper portion. The pedestal can be laterally inset from lower edges of the first and second opposing lateral sides. The pedestal can include a distal end portion configured to couple to a carrier.