Abstract:
Methods and apparatus for producing high aspect ratio features in a substrate using reactive ion etching (RIE). In some embodiments, a method comprises flowing a gas mixture of C3H2F4 and a companion gas into a process chamber, forming a plasma from the gas mixture using an RF power source connected to an upper electrode above the substrate and at least one RF bias power source connected to a lower electrode under the substrate, performing an anisotropic etch, via the plasma, of at least one layer of oxide or nitride on the substrate using a pattern mask, reducing power of the at least one RF bias power source to produce deposition of a passivation layer on the at least one layer of oxide or nitride on the substrate, and evacuating the process chamber while interrupting the RF power source to stop plasma formation.
Abstract:
The present disclosure generally relates to methods of and apparatuses for controlling a plasma sheath near a substrate edge. The apparatus includes an auxiliary electrode that may be positioned adjacent an electrostatic chuck. The auxiliary electrode is recursively fed from a power source using equal length and equal impedance feeds. The auxiliary electrode is vertically actuatable, and is tunable with respect to ground or other frequencies responsible for plasma generation. Methods of using the same are also provided.
Abstract:
Implementations described herein provide a magnetic ring which enables both lateral and azimuthal tuning of the plasma in a processing chamber. In one embodiment, the magnetic ring has a body. The body has a top surface and a bottom surface, and a plurality of magnets are disposed on the bottom surface of the body.
Abstract:
Implementations described herein provide a method for processing a substrate on a substrate support assembly which enables both lateral and azimuthal tuning of the heat transfer between an electrostatic chuck and a substrate. The method includes processing a first substrate using a first temperature profile on a substrate support assembly having primary heaters and spatially tunable heaters. A deviation profile is determined from a result of processing the first substrate. The spatially tunable heaters are controlled in response to the deviation profile to enable discrete lateral and azimuthal tuning of local hot or cold spots on the substrate support assembly in forming a second temperature profile. A second substrate is then processed using the second temperature profile.
Abstract:
Methods and apparatus of controlling a temperature of components in a process chamber that is heated by a plasma or a heater and cooled by a coolant flow through a heat exchanger. An apparatus, for example, can include a chuck assembly and/or a plasma source including a respective cooling plate; a proportional bypass valve connected between the respective cooling plate and a heat exchanger; a temperature sensor configured to measure a temperature of the coolant through the outlet channel of the respective cooling plate; and a controller that receives a measured temperature from the temperature sensor measuring, and in response to receiving the measured temperature controls a rate of flow of the coolant through the first coolant output line and the second coolant output line of the proportional bypass valve.
Abstract:
Embodiments of the present disclosure relate to a showerhead assembly for use in a processing chamber. The showerhead assembly includes a porous insert disposed in a space defined between a gas distribution plate and a base plate to moderate the corrosive radicals resulting from plasma ignition to reduce particle issues and metal contamination in the chamber. The porous insert is a conductive material, such as metal, used to reduce the gap electrical field strength, or may be a dielectric material such as ceramic, polytetrafluoroethylene, polyamide-imide, or other materials with a low dielectric loss and high electrical field strength under conditions of high frequency and strong electric fields. As such, the electrical breakdown threshold is enhanced. The porous insert may reduce and/or eliminate showerhead backside plasma ignition and may include multiple concentric narrow rings that cover gas holes of the gas distribution plate.
Abstract:
Methods and apparatus for a multi-chamber processing system having shared vacuum systems are disclosed herein. In some embodiments, a multi-chamber processing system for processing substrates includes a first process chamber; a second process chamber; a first vacuum system coupled to the first and second process chambers through first and second valves and to a first shared vacuum pump; and a second vacuum system coupled to the first and second process chambers through third and fourth valves and to a second shared vacuum pump, wherein the second vacuum system is fluidly independent from the first vacuum system.
Abstract:
Methods and apparatus for processing a substrate are provided herein. For example, apparatus can include a first voltage/current (V/I) probe configured to connect to an input side of a matching network of the processing chamber and a second V/I probe configured to connect to an output side of the matching network and a processor coupled to the first V/I probe and the second V/I probe and configured to, based on a phase gap between a V and I of an RF signal detected by at least one of the first V/I probe or the second V/I probe at a target frequency, detect a minimum phase gap between the V and I, and control at least one of impedance tuning of the matching network or process control of the processing chamber using at least one of a peak or RMS of V, I and phase measured at the target frequency or under sweeping frequency.
Abstract:
Embodiments of the present disclosure relate to a showerhead assembly for use in a processing chamber. The showerhead assembly includes a porous insert disposed in a space defined between a gas distribution plate and a base plate to moderate the corrosive radicals resulting from plasma ignition to reduce particle issues and metal contamination in the chamber. The porous insert is a conductive material, such as metal, used to reduce the gap electrical field strength, or may be a dielectric material such as ceramic, polytetrafluoroethylene, polyamide-imide, or other materials with a low dielectric loss and high electrical field strength under conditions of high frequency and strong electric fields. As such, the electrical breakdown threshold is enhanced. The porous insert may reduce and/or eliminate showerhead backside plasma ignition and may include multiple concentric narrow rings that cover gas holes of the gas distribution plate.
Abstract:
Methods and systems for controlling temperatures in plasma processing chamber with reduced controller response times and increased stability. Temperature control is based at least in part on a feedforward control signal derived from a plasma power input into the processing chamber. A feedforward control signal compensating disturbances in the temperature attributable to the plasma power may be combined with a feedback control signal counteracting error between a measured and desired temperature.