Abstract:
An apparatus for coating a thin film on a flexible substrate is described. The apparatus includes a coating drum having an outer surface for guiding the flexible substrate through a first vacuum processing region and at least one second vacuum processing region, a gas separation unit for separating the first vacuum processing region and at least one second vacuum processing region and adapted to form a slit through which the flexible substrate can pass between the outer surface of the coating drum and the gas separation unit, wherein the gas separation unit is adapted to control fluid communication between the first processing region and the second processing region by adjusting the position of the gas separation unit.
Abstract:
An apparatus for depositing a thin film on a substrate is described. The apparatus includes a substrate support having an outer surface for guiding the substrate along a surface of the substrate support through a first vacuum processing region and at least one second vacuum processing region, a first deposition sources corresponding to the first processing region and at least one second deposition source corresponding to the at least one second vacuum processing region. The apparatus further includes one or more vacuum flanges providing at least a further gas outlet between the first deposition source and the at least one second deposition source.
Abstract:
A processing apparatus for processing a flexible substrate, particularly a vacuum processing apparatus for processing a flexible substrate, is described. The processing apparatus includes a vacuum chamber; a processing drum within the vacuum chamber, wherein the processing drum is configured to rotate around an axis extending in a first direction; and a heating device adjacent to the processing drum, wherein the heating device is configured for spreading the substrate in the first direction or for maintaining a spread of the substrate in the first direction, and wherein the heating device has a dimension in a direction parallel to a substrate transport direction of at least 20 mm.
Abstract:
A vacuum processing system for a flexible substrate is provided. The processing system includes a first chamber adapted for housing one of a supply roll for providing the flexible substrate and a take-up roll for storing the flexible substrate; a second chamber adapted for housing one of a supply roll for providing the flexible substrate and a take-up roll for storing the flexible substrate; a maintenance zone between the first chamber and the second chamber; and a first process chamber for depositing material on the flexible substrate, wherein the second chamber is provided between the maintenance zone and the first process chamber. The maintenance zone allows for maintenance access to at least one of the first chamber and the second chamber.
Abstract:
A processing apparatus for processing a flexible substrate in a vacuum chamber is described. The processing apparatus includes a processing drum for processing the flexible substrate while being guided on the processing drum, a roller arrangement having one or more rollers configured to contact the flexible substrate along a portion of one or more circumferences of the one or more rollers before the flexible substrate is guided on the processing drum, wherein the combined length of contact along one or more portions of the one or more circumferences of the one or more rollers is 270 mm or above, and wherein an individual length of contact along each of the one or more portions of the one or more circumferences of the one or more rollers is 500 mm or below, and a temperature adjustment element adjusting the temperature of the one or more rollers.
Abstract:
According to the present disclosure, a method for cleaning the processing chamber of a flexible substrate processing apparatus without breaking the vacuum in the processing chamber is provided. The method for cleaning the processing chamber includes guiding a sacrificial foil into the processing chamber; initiating a first pump process in the processing chamber; plasma cleaning the processing chamber while the sacrificial foil is provided in the processing chamber; initiating a second pump process in the processing chamber; and guiding a flexible substrate into the processing chamber.
Abstract:
An apparatus for processing a flexible substrate is described. The apparatus includes a vacuum chamber having a first chamber portion, a second chamber portion and a third chamber portion, an unwinding shaft for supporting the flexible substrate to be processed and a winding shaft supporting the flexible substrate having the thin film deposited thereon, wherein the unwinding shaft and the winding shaft are arranged in the first chamber portion, at least one gap sluice for separating the first chamber portion from the second chamber portion, wherein the gap sluice is configured such that the flexible substrate can move there through and the gap sluice can be opened and closed for providing a vacuum seal, a coating drum having a rotation axis and a curved outer surface for guiding the substrate along the curved outer surface through a first vacuum processing region and at least one second vacuum processing region, wherein a first portion of the coating drum is provided in the second chamber portion and the remaining portion of the coating drum is provided in the third chamber portion, a first processing station corresponding to the first processing region and at least one second processing station corresponding to the at least one second vacuum processing region, wherein the first processing station and the second processing station each includes a flange portion for providing a vacuum connection. Further, the third chamber portion has a convex shaped chamber wall portion, wherein the third chamber portion has at least two openings provided therein, particularly wherein the at least two openings are essentially parallel to the convex shaped chamber wall portion; and wherein the first processing station and the at least one second processing station are configured to be received in the at least two openings, wherein the flange portions of the first processing station and the second processing station provide a vacuum tight connection with the third chamber.
Abstract:
An apparatus for depositing a thin film on a substrate is described. The apparatus includes a substrate support having an outer surface for guiding the substrate through a vacuum processing region, a plasma deposition source for depositing the thin film on the substrate in the vacuum processing region, wherein the plasma deposition source comprises an electrode, and an actuator configured for adjusting the distance between the electrode and the outer surface.
Abstract:
An apparatus for coating a thin film on a flexible substrate is described. The apparatus includes a coating drum having an outer surface for guiding the flexible substrate through a first vacuum processing region and at least one second vacuum processing region, a gas separation unit for separating the first vacuum processing region and at least one second vacuum processing region and adapted to form a slit through which the flexible substrate can pass between the outer surface of the coating drum and the gas separation unit, wherein the gas separation unit is adapted to control fluid communication between the first processing region and the second processing region by adjusting the position of the gas separation unit.
Abstract:
An apparatus for processing a flexible substrate is provided including a vacuum chamber having a first chamber portion, second chamber portion and third chamber portion. The apparatus further includes an unwinding shaft supporting the flexible substrate to be processed and a winding shaft supporting the flexible substrate after processing, wherein the unwinding shaft and the winding shaft are disposed in the first chamber portion, a first wall separating the first chamber portion from the second chamber portion, wherein the first wall is inclined with respect to a vertical and horizontal orientation, a coating drum having a first portion disposed in the second chamber portion and a second portion disposed in the third chamber portion, and a plurality of processing stations disposed at least partially in the third chamber portion, wherein a majority of the plurality of the processing stations are disposed below a rotational axis of the coating drum.