Abstract:
Methods and apparatus perform backside via reveal processes using a centralized control framework for multiple process tools. In some embodiments, a method for performing a backside via reveal process may include receiving process tool operational parameters from process tools involved in the backside via reveal process by a central controller, receiving sensor metrology data from at least one or more of the process tools involved in the backside via reveal process, and altering the backside reveal process based, at least in part, on the process tool operational parameters and the sensor metrology data by adjusting two or more of the process tools involved in the backside via reveal process. The profile parameters are configured to prevent backside via breakage during a chemical mechanical polishing (CMP) process.
Abstract:
A substrate support carrier includes an electrostatic chuck (ESC) assembly includes a top ceramic disc having a recess formed from a lower surface of the top ceramic disc, a bottom ceramic disc having a hole through the bottom ceramic disc, an upper bonding layer interposed between the lower surface of the top ceramic disc and an upper surface of the bottom ceramic disc, and a porous plug within at least one of the recess of the top ceramic disc and the hole of the bottom ceramic disc, a temperature control base, and a lower bonding layer interposed between a lower surface of the bottom ceramic disc and an upper surface of the temperature control base.
Abstract:
Methods and apparatus for processing a substrate are provided herein. For example, the method can include depositing a first layer of metal on a first substrate; depositing a second layer of metal atop the first layer of metal; depositing a third layer of metal on a second substrate; depositing a fourth layer of metal atop the third layer of metal; and bringing the second layer of material into contact with the fourth layer of material under conditions sufficient to cause the first substrate to be bonded to the second substrate by a diffusion layer formed by portions of the first layer of metal diffusing through the second layer of metal and portions of the third layer of metal diffusing through the fourth layer of metal.
Abstract:
Methods and apparatus for processing a substrate are described herein. A vacuum multi-chamber deposition tool can include a degas chamber with both a heating mechanism and a variable frequency microwave source. The methods described herein use variable frequency microwave radiation to increased quality and speed of the degas process without damaging the various components.
Abstract:
Methods and apparatus for processing a substrate are described herein. A vacuum multi-chamber deposition tool can include a degas chamber with both a heating mechanism and a variable frequency microwave source. The methods described herein use variable frequency microwave radiation to increased quality and speed of the degas process without damaging the various components.
Abstract:
Embodiments described herein generally provide a method for performing a semiconductor precleaning process. More specifically, embodiments provided herein relate to boron ionization for aluminum oxide etch enhancement. A process for removing native oxide from aluminum may utilize ionized boron alone or in combination with a halogen plasma. The ionized boron may provide improved aluminum oxide etching properties while being highly selective for native oxides more generally.
Abstract:
Methods and apparatus for processing a substrate are described herein. A vacuum multi-chamber deposition tool can include a degas chamber with both a heating mechanism and a variable frequency microwave source. The methods described herein use variable frequency microwave radiation to increased quality and speed of the degas process without damaging the various components.