Abstract:
Methods for depositing a metal layer in a feature definition of a semiconductor device are provided. In one implementation, a method for depositing a metal layer for forming a semiconductor device is provided. The method comprises performing a cyclic metal deposition process to deposit a metal layer on a substrate and annealing the metal layer disposed on the substrate. The cyclic metal deposition process comprises exposing the substrate to a deposition precursor gas mixture to deposit a portion of the metal layer on the substrate, exposing the portion of the metal layer to either a plasma treatment process or hydrogen annealing process and repeating the exposing the substrate to a deposition precursor gas mixture and exposing the portion of the metal layer to either a plasma treatment process or hydrogen annealing process until a predetermined thickness of the metal layer is achieved.
Abstract:
Implementations described herein generally relate to methods for forming tungsten materials on substrates using vapor deposition processes. The method comprises positioning a substrate having a feature formed therein in a substrate processing chamber, depositing a first film of a bulk tungsten layer by introducing a continuous flow of a hydrogen containing gas and a tungsten halide compound to the processing chamber to deposit the first tungsten film over the feature, etching the first film of the bulk tungsten layer using a plasma treatment to remove a portion of the first film by exposing the first film to a continuous flow of the tungsten halide compound and an activated treatment gas and depositing a second film of the bulk tungsten layer by introducing a continuous flow of the hydrogen containing gas and the tungsten halide compound to the processing chamber to deposit the second tungsten film over the first tungsten film.
Abstract:
Methods for depositing ruthenium by a PECVD process are described herein. Methods for depositing ruthenium can include positioning a substrate in a processing chamber, the substrate having a barrier layer formed thereon, heating and maintaining the substrate at a first temperature, flowing a first deposition gas into a processing chamber, the first deposition gas comprising a ruthenium containing precursor, generating a plasma from the first deposition gas to deposit a first ruthenium layer over the barrier layer, flowing a second deposition gas into the processing chamber to deposit a second ruthenium layer over the first ruthenium layer, the second deposition gas comprising a ruthenium containing precursor, depositing a copper seed layer over the second ruthenium layer and annealing the substrate at a second temperature.
Abstract:
Methods for depositing a metal layer in a feature definition of a semiconductor device are provided. In one implementation, a method for depositing a metal layer for forming a semiconductor device is provided. The method comprises performing a cyclic metal deposition process to deposit a metal layer on a substrate and annealing the metal layer disposed on the substrate. The cyclic metal deposition process comprises exposing the substrate to a deposition precursor gas mixture to deposit a portion of the metal layer on the substrate, exposing the portion of the metal layer to either a plasma treatment process or hydrogen annealing process and repeating the exposing the substrate to a deposition precursor gas mixture and exposing the portion of the metal layer to either a plasma treatment process or hydrogen annealing process until a predetermined thickness of the metal layer is achieved.
Abstract:
Embodiments described herein generally provide a method for performing a semiconductor precleaning process. More specifically, embodiments provided herein relate to boron ionization for aluminum oxide etch enhancement. A process for removing native oxide from aluminum may utilize ionized boron alone or in combination with a halogen plasma. The ionized boron may provide improved aluminum oxide etching properties while being highly selective for native oxides more generally.
Abstract:
Implementations described herein generally relate to methods and apparatus for in-situ removal of unwanted deposition buildup from one or more interior surfaces of a semiconductor substrate processing chamber. In one implementation, a method for removing cobalt or cobalt containing deposits from one or more interior surfaces of a substrate processing chamber after processing a substrate disposed in the substrate processing chamber is provided. The method comprises forming a reactive species from the fluorine containing cleaning gas mixture, permitting the reactive species to react with the cobalt and/or the cobalt containing deposits to form cobalt fluoride in a gaseous state and purging the cobalt fluoride in gaseous state out of the substrate processing chamber.
Abstract:
Embodiments provide methods for depositing metal-containing materials. The methods include deposition processes that form metal, metal carbide, metal silicide, metal nitride, and metal carbide derivatives by a vapor deposition process, including thermal decomposition, CVD, pulsed-CVD, or ALD. A method for processing a substrate is provided which includes depositing a dielectric material forming a feature definition in the dielectric material, depositing a work function material conformally on the sidewalls and bottom of the feature definition, and depositing a metal gate fill material on the work function material to fill the feature definition, wherein the work function material is deposited by reacting at least one metal-halide precursor having the formula MXY, wherein M is tantalum, hafnium, titanium, and lanthanum, X is a halide selected from the group of fluorine, chlorine, bromine, or iodine, and y is from 3 to 5.