摘要:
An optoelectronic semiconductor chip comprises the following sequence of regions in a growth direction (c) of the semiconductor chip (20): a p-doped barrier layer (1) for an active region (2), the active region (2), which is suitable for generating electromagnetic radiation, the active region being based on a hexagonal compound semiconductor, and an n-doped barrier layer (3) for the active region (2). Also disclosed are a component comprising such a semiconductor chip, and a method for producing such a semiconductor chip.
摘要:
A method for producing an optoelectronic semiconductor chip based on a nitride semiconductor system is specified. The method comprises the steps of: forming a semiconductor section with at least one p-doped region; and forming a covering layer disposed downstream of the semiconductor section in a growth direction of the semiconductor chip, said covering layer having at least one n-doped semiconductor layer. An activation step suitable for electrically activating the p-doped region is effected before or during the formation of the covering layer. An optoelectronic semiconductor chip which can be produced by the method is additionally specified.
摘要:
An optoelectronic semiconductor chip comprises a growth substrate with a structured growth area (2) having a multiplicity of elevations (4) and depressions (3), and an active layer sequence (5) applied to the growth area (2).
摘要:
An optoelectronic projection device which generates a predefined image during operation, including a semiconductor body having an active layer that generates electromagnetic radiation and a radiation exit side and is an imaging element of the projection device, wherein, to electrically contact the semiconductor body, a first contact layer and a second contact layer are arranged at a rear side of the semiconductor body, the rear side lying opposite the radiation exit side, and are electrically insulated from one another by a separating layer.
摘要:
An optoelectronic semiconductor body comprises a semiconductor layer sequence which is subdivided into at least two electrically isolated subsegments. The semiconductor layer sequence has an active layer in each subarea. Furthermore, at least three electrical contact pads are provided. A first line level makes contact with a first of the at least two subsegments and with the first contact pad. A second line level makes contact with the second of the at least two subsegments and with a second contact pad. A third line level connects the two subsegments to one another and makes contact with the third contact pad. Furthermore, the line levels are each arranged opposite a first main face, wherein the first main face is intended to emit electromagnetic radiation that is produced.