摘要:
A counter comprised of two flip flops and a multiplexer produces a sequential or interleaved address sequence. The addresses produced are used to access memory elements in a Burst Extended Data Output Dynamic Random Access Memory (Burst EDO or BEDO DRAM). Input addresses in combination with a sequence select signal are logically combined to produce a multiplexer select input which selects between true and compliment outputs of a first flip flop to couple to an input of a second flip flop to specify a toggle condition for the second flip flop. Outputs of the counter are compared with outputs of an input address latch to detect the end of a burst sequence and initialize the device for another burst access. A transition of the Read/Write control line during a burst access will terminate the burst access and initialize the device for another burst access.
摘要:
An integrated circuit memory device is designed for high speed data access and for compatibility with existing memory systems. An address strobe signal is used to latch a first address. During a burst access cycle the address is incremented internal to the device with additional address strobe transitions. A new memory address is only required at the beginning of each burst access. Read/Write commands are issued once per burst access eliminating the need to toggle the Read/Write control line at the device cycle frequency. Transitions of the Read/Write control line during a burst access will terminate the burst access, reset the burst length counter and initialize the device for another burst access. The device is compatible with existing Extended Data Out DRAM device pinouts, Fast Page Mode and Extended Data Out Single In-Line Memory Module pinouts, and other memory circuit designs.
摘要:
An integrated circuit memory device is designed for high speed data access and for compatibility with existing memory systems. An address strobe signal is used to latch a first address. During a burst access cycle the address is incremented internal to the device with additional address strobe transitions. A new memory address is only required at the beginning of each burst access. Read/Write commands are issued once per burst access eliminating the need to toggle the Read/Write control line at the device cycle frequency. Transitions of the Read/Write control line during a burst access will terminate the burst access, reset the burst length counter and initialize the device for another burst access. The device is compatible with existing Extended Data Out DRAM device pinouts, Fast Page Mode and Extended Data Out Single In-Line Memory Module pinouts, and other memory circuit designs.
摘要:
A counter comprised of two flip flops and a multiplexer produces a sequential or interleaved address sequence. The addresses produced are used to access memory elements in a Burst Extended Data Output Dynamic Random Access Memory (Burst EDO or BEDO DRAM). Input addresses in combination with a sequence select signal are logically combined to produce a multiplexer select input which selects between true and compliment outputs of a first flip flop to couple to an input of a second flip flop to specify a toggle condition for the second flip flop. Outputs of the counter are compared with outputs of an input address latch to detect the end of a burst sequence and initialize the device for another burst access. A transition of the Read/Write control line during a burst access will terminate the burst access and initialize the device for another burst access.
摘要:
An integrated circuit memory device is described which can operate at high data speeds. The memory device can either store or retrieve data from the memory in a burst access operation. The burst operations latches a memory address from external address lines and internally generates additional memory addresses. A clock signal is provided to synchronize the burst operations. The clock signal is independent of an address latch signal used to latch an external address.
摘要:
An integrated circuit memory device is described which can operate at high data speeds. The memory device can either store or retrieve data from the memory in a burst access operation. The burst operations latches a memory address from external address lines and internally generates additioned memory addresses. A clock signed is provided to synchronize the burst operations. The clock signed is independent of an address latch signal used to latch an external address.
摘要:
The present disclosure includes apparatuses and methods for data compression and management. A number of methods include receiving a number of data segments corresponding to a managed unit amount of data, determining a respective compressibility of each of the number of data segments, compressing each of the number of data segments in accordance with its respective determined compressibility, forming a compressed managed unit that includes compressed and/or uncompressed data segments corresponding to the number of data segments corresponding to the managed unit amount of data, and forming a page of data that comprises at least the compressed managed unit.
摘要:
The present disclosure includes methods for logical address translation, methods for operating memory systems, and memory systems. One such method includes receiving a command associated with a LA, wherein the LA is in a particular range of LAs and translating the LA to a physical location in memory using an offset corresponding to a number of physical locations skipped when writing data associated with a range of LAs other than the particular range.
摘要:
Electronic apparatus, systems, and methods may operate structures to access a portion of a row of a memory array without accessing the entire row. Additional apparatus, systems, and methods are disclosed.
摘要:
Expect data signals are generated for a series of applied data signals having a known sequence to determine if groups of the data signals were properly captured. A first group of the applied data signals is captured, and a group of expect data signals are generated from the captured first group. A second group of applied data signals is then captured and determined to have been properly captured when the second group corresponds to the group of expect data signals. In this way, when a captured series of data signals is shifted in time from an expected capture point, subsequent captured data signals are compared to their correct expected data signals in order to determine whether that group, although shifted in time, was nonetheless correctly captured. A pattern generator generates expect data signals in this manner, and may be utilized in a variety of integrated circuits, such as an SLDRAM.