摘要:
An object is to provide a semiconductor device having excellent characteristics, in which a channel layer includes an oxide semiconductor with high crystallinity. In addition, a semiconductor device including a base film with improved planarity is provided. CMP treatment is performed on the base film of the transistor and plasma treatment is performed thereon after the CMP treatment, whereby the base film can have a center line average roughness Ra75 of less than 0.1 nm. The oxide semiconductor layer with high crystallinity is formed over the base film having planarity, which is obtained by the combination of the plasma treatment and the CMP treatment, thereby improving the characteristics of the semiconductor device.
摘要:
A miniaturized transistor having high electric characteristics is provided with high yield. In a semiconductor device including the transistor, high performance, high reliability, and high productivity are achieved. In a semiconductor device including a transistor in which an oxide semiconductor film, a gate insulating film, and a gate electrode layer on side surfaces of which sidewall insulating layers are provided are stacked in this order, source and drain electrode layers are provided in contact with the oxide semiconductor film and the sidewall insulating layers. In a process for manufacturing the semiconductor device, a conductive film and an interlayer insulating film are stacked to cover the oxide semiconductor film, the sidewall insulating layers, and the gate electrode layer, and the interlayer insulating film and the conductive film over the gate electrode layer are removed by a chemical mechanical polishing method, so that the source and drain electrode layers are formed.
摘要:
A minute transistor and the method of manufacturing the minute transistor. A source electrode layer and a drain electrode layer are each formed in a corresponding opening formed in an insulating layer covering a semiconductor layer. The opening of the source electrode layer and the opening of the drain electrode layer are formed separately in two distinct steps. The source electrode layer and the drain electrode layer are formed by depositing a conductive layer over the insulating layer and in the openings, and subsequently removing the part located over the insulating layer by polishing. This manufacturing method allows for the source electrode later and the drain electrode layer to be formed close to each other and close to a channel forming region of the semiconductor layer. Such a structure leads to a transistor having high electrical characteristics and a high manufacturing yield even in the case of a minute structure.
摘要:
It is an object to form a conductive region in an insulating film without forming contact holes in the insulating film. A method is provided, in which an insulating film is formed over a first electrode over a substrate, a first region having many defects is formed at a first depth in the insulating film by adding first ions into the insulating film at a first accelerating voltage; a second region having many defects is formed at a second depth which is different from the first depth in the insulating film by adding second ions into the insulating film at a second accelerating voltage, a conductive material containing a metal element is formed over the first and second regions; and a conductive region which electrically connects the first electrode and the conductive material is formed in the insulating film by diffusing the metal element into the first and second regions.
摘要:
The method of one embodiment of the present invention includes: a first step of irradiating a bond substrate with ions to form an embrittlement region in the bond substrate; a second step of bonding the bond substrate to a base substrate with an insulating layer therebetween; a third step of splitting the bond substrate at the embrittlement region to form a semiconductor layer over the base substrate with the insulating layer therebetween; and a fourth step of subjecting the bond substrate split at the embrittlement region to a first heat treatment in an argon atmosphere and then a second heat treatment in an atmosphere of a mixture of oxygen and nitrogen to form a reprocessed bond substrate. The reprocessed bond substrate is used again as a bond substrate in the first step.
摘要:
To provide a manufacturing method of a semiconductor device in which, even when the semiconductor device is formed over an SOI substrate which uses a glass substrate, an insulating film and a semiconductor film over the glass substrate are not peeled by stress applied by a conductive film in formation of the conductive film for forming a gate electrode. A semiconductor device is manufactured by the steps of forming a first insulating film over a bond substrate, forming an embrittlement layer by adding ions from a surface of the bond substrate, bonding the bond substrate to a glass substrate with the first insulating film interposed therebetween, separating the bond substrate along the embrittlement layer to form a semiconductor film over the glass substrate with the first insulating film interposed therebetween, removing a peripheral region of the first insulating film and the semiconductor film to expose part of the glass substrate, forming a gate insulating film over and in contact with the semiconductor film and the glass substrate, and forming a stacked conductive film over and in contact with the gate insulating film, in which the stacked conductive film includes a conductive film having a tensile stress and a conductive film having a compressive stress.
摘要:
In a semiconductor device in which a copper plating layer is used for a conductor of an antenna and in which an integrated circuit and the antenna are formed over the same substrate, an object is to prevent an adverse effect on electrical characteristics of a circuit element due to diffusion of copper, as well as to provide a copper plating layer with favorable adhesiveness. Another object is to prevent a defect in the semiconductor device that stems from poor connection between the antenna and the integrated circuit, in the semiconductor device in which the integrated circuit and the antenna are formed over the same substrate. In the semiconductor device, a copper plating layer is used for the antenna, an alloy of Ag, Pd, and Cu is used for a seed layer thereof, and TiN or Ti is used for a barrier layer.
摘要:
An object of an embodiment of the disclosed invention is to provide a method suitable for reprocessing a semiconductor substrate which is reused to manufacture an SOI substrate. A semiconductor substrate is reprocessed in the following manner: etching treatment is performed on a semiconductor substrate in which a step portion including a damaged semiconductor region and an insulating layer exists in a peripheral portion, whereby the insulating layer is removed; etching treatment is performed on the semiconductor substrate with the use of a mixed solution including a substance that oxidizes a semiconductor material included in the semiconductor substrate, a substance that dissolves the oxidized semiconductor material, and a substance that controls oxidation speed of the semiconductor material and dissolution speed of the oxidized semiconductor material, whereby the damaged semiconductor region is selectively removed with a non-damaged semiconductor region left; and heat treatment under an atmosphere including hydrogen is performed.
摘要:
An object of the present invention is to prevent electrical characteristics of circuit elements from being adversely affected by copper diffusion in a semiconductor device having an integrated circuit and an antenna formed over the same substrate, which uses copper plating for the antenna. Another object is to prevent a defect of a semiconductor device due to poor connection between an antenna and an integrated circuit in a semiconductor device having the integrated circuit and the antenna formed over the same substrate. In a semiconductor device having an integrated circuit 100 and an antenna 101 formed over one substrate 102, when a copper plating layer 108 is used for a conductor of the antenna 101, it is possible to prevent copper diffusion to circuit elements and decrease an adverse effect on electrical characteristics of circuit elements due to the copper diffusion because a base layer 107 of the antenna 101 uses a nitride film of a predetermined metal. Moreover, by the use of nickel nitride as a metal nitride for the base layer of the antenna, poor connection between the antenna and the integrated circuit can be decreased.
摘要:
A method suitable to reprocess a semiconductor substrate is provided. A semiconductor substrate in which a projection including a damaged semiconductor region and an insulating layer is provided in a peripheral portion of the semiconductor substrate is subjected to etching treatment for removing the insulating layer and to etching treatment for removing the damaged semiconductor region selectively with a non-damaged semiconductor region left using a mixed solution including nitric acid, a substance dissolving a semiconductor material included in the semiconductor substrate and oxidized by the nitric acid, a substance controlling a speed of oxidation of the semiconductor material and a speed of dissolution of the oxidized semiconductor material, and nitrous acid, in which the concentration of the nitrous acid is higher than or equal to 10 mg/l and lower than or equal to 1000 mg/l. Through these steps, the semiconductor substrate is reprocessed.