摘要:
An apparatus and method for forming a patterned graphene layer on a substrate. One such method includes forming at least one patterned structure of a carbide-forming metal or metal-containing alloy on a substrate, applying a layer of graphene on top of the at least one patterned structure of a carbide-forming metal or metal-containing alloy on the substrate, heating the layer of graphene on top of the at least one patterned structure of a carbide-forming metal or metal-containing alloy in an environment to remove graphene regions proximate to the at least one patterned structure of a carbide-forming metal or metal-containing alloy, and removing the at least one patterned structure of a carbide-forming metal or metal-containing alloy to produce a patterned graphene layer on the substrate, wherein the patterned graphene layer on the substrate provides carrier mobility for electronic devices.
摘要:
An apparatus and method for forming a patterned graphene layer on a substrate. One such method includes forming at least one patterned structure of a carbide-forming metal or metal-containing alloy on a substrate, applying a layer of graphene on top of the at least one patterned structure of a carbide-forming metal or metal-containing alloy on the substrate, heating the layer of graphene on top of the at least one patterned structure of a carbide-forming metal or metal-containing alloy in an environment to remove graphene regions proximate to the at least one patterned structure of a carbide-forming metal or metal-containing alloy, and removing the at least one patterned structure of a carbide-forming metal or metal-containing alloy to produce a patterned graphene layer on the substrate, wherein the patterned graphene layer on the substrate provides carrier mobility for electronic devices.
摘要:
Disclosed is a method which includes forming a bottom metallic electrode on an insulating substrate; forming a semiconductor junction on the metallic electrode; forming a transparent conducting overlayer in contact with the semiconductor junction; and forming a metallic layer in contact with the transparent conducting overlayer, wherein the metallic layer is formed by a plating process. The plating process may be an electroplating process or an electroless plating process. The transparent conducting overlayer may be carbon nanotubes or graphene. The semiconductor junction may be a p-i-n semiconductor junction, a p-n semiconductor junction, an n-p semiconductor junction or an n-i-p semiconductor junction.
摘要:
A graphene nanomesh based charge sensor and method for producing a graphene nanomesh based charge sensor. The method includes generating multiple holes in graphene in a periodic way to create a graphene nanomesh with a patterned array of multiple holes, passivating an edge of each of the multiple holes of the graphene nanomesh to allow for functionalization of the graphene nanomesh, and functionalizing the passivated edge of each of the multiple holes of the graphene nanomesh with a chemical compound that facilitates chemical binding of a receptor of a target molecule to the edge of one or more of the multiple holes, allowing the target molecule to bind to the receptor, causing a charge to be transferred to the graphene nanomesh to produce a graphene nanomesh based charge sensor for the target molecule.
摘要:
A method, an apparatus and an article of manufacture for attracting charged nanoparticles using a graphene nanomesh. The method includes creating a graphene nanomesh by generating multiple holes in graphene, wherein each of the multiple holes is of a size appropriate to a targeted charged nanoparticle, selectively passivating the multiple holes of the graphene nanomesh to form a charged ring in the graphene nanomesh by treating the graphene nanomesh with chemistry yielding a trap with an opposite charge to that of the targeted nanoparticle, and electrostatically attracting the target charged nanoparticle to the oppositely charged ring to facilitate docking of the charged nanoparticle to the graphene nanomesh.
摘要:
A method, an apparatus and an article of manufacture for attracting charged nanoparticles using a graphene nanomesh. The method includes creating a graphene nanomesh by generating multiple holes in graphene, wherein each of the multiple holes is of a size appropriate to a targeted charged nanoparticle, selectively passivating the multiple holes of the graphene nanomesh to form a charged ring in the graphene nanomesh by treating the graphene nanomesh with chemistry yielding a trap with an opposite charge to that of the targeted nanoparticle, and electrostatically attracting the target charged nanoparticle to the oppositely charged ring to facilitate docking of the charged nanoparticle to the graphene nanomesh.
摘要:
A graphene nanomesh based charge sensor and method for producing a graphene nanomesh based charge sensor. The method includes generating multiple holes in graphene in a periodic way to create a graphene nanomesh with a patterned array of multiple holes, passivating an edge of each of the multiple holes of the graphene nanomesh to allow for functionalization of the graphene nanomesh, and functionalizing the passivated edge of each of the multiple holes of the graphene nanomesh with a chemical compound that facilitates chemical binding of a receptor of a target molecule to the edge of one or more of the multiple holes, allowing the target molecule to bind to the receptor, causing a charge to be transferred to the graphene nanomesh to produce a graphene nanomesh based charge sensor for the target molecule.
摘要:
A nanotube-graphene hybrid film and method for forming a cleaned nanotube-graphene hybrid film. The method includes depositing nanotube film over a substrate to produce a layer of nanotube film, removing impurities from a surface of the layer of nanotube film not contacting the substrate to produce a cleaned layer of nanotube film, depositing a layer of graphene over the cleaned layer of nanotube film to produce a nanotube-graphene hybrid film, and removing impurities from a surface of the nanotube-graphene hybrid film to produce a cleaned nanotube-graphene hybrid film, wherein the hybrid film has improved electrical performance. Another method includes depositing nanotube film over a metal foil to produce a layer of nanotube film, placing the metal foil with as-deposited nanotube film in a chemical vapor deposition furnace to grow graphene on the nanotube film to form a nanotube-graphene hybrid film, and transferring the nanotube-graphene hybrid film over a substrate.
摘要:
A nanotube-graphene hybrid film and method for forming a cleaned nanotube-graphene hybrid film. The method includes depositing nanotube film over a substrate to produce a layer of nanotube film, removing impurities from a surface of the layer of nanotube film not contacting the substrate to produce a cleaned layer of nanotube film, depositing a layer of graphene over the cleaned layer of nanotube film to produce a nanotube-graphene hybrid film, and removing impurities from a surface of the nanotube-graphene hybrid film to produce a cleaned nanotube-graphene hybrid film, wherein the hybrid film has improved electrical performance. Another method includes depositing nanotube film over a metal foil to produce a layer of nanotube film, placing the metal foil with as-deposited nanotube film in a chemical vapor deposition furnace to grow graphene on the nanotube film to form a nanotube-graphene hybrid film, and transferring the nanotube-graphene hybrid film over a substrate.
摘要:
A solar cell includes a semiconductor portion, a graphene layer disposed on a first surface of the semiconductor portion, and a first conductive layer patterned on the graphene layer, the first conductive layer including at least one bus bar portion and a plurality of fingers extending from the at least one bus bar portion.