摘要:
Methods of fabricating a passive element and a semiconductor device including the passive element are disclosed including the use of a dummy passive element. A dummy passive element is a passive element or wire which is added to the chip layout to aid in planarization but is not used in the active circuit. One embodiment of the method includes forming the passive element and a dummy passive element adjacent to the passive element; forming a dielectric layer over the passive element and the dummy passive element, wherein the dielectric layer is substantially planar between the passive element and the dummy passive element; and forming in the dielectric layer an interconnect to the passive element through the dielectric layer and a dummy interconnect portion overlapping at least a portion of the dummy passive element. The methods eliminate the need for planarizing.
摘要:
The present invention provides a semiconductor structure including a buried resistor with improved control, in which the resistor is fabricated in a region of a semiconductor substrate beneath a well region that is also present in the substrate. In accordance with the present invention, the inventive structure includes a semiconductor substrate containing at least a well region; and a buried resistor located in a region of the semiconductor substrate that is beneath said well region. The present invention also provides a method of fabricating such a structure in which a deep ion implantation process is used to form the buried resistor and a shallower ion implantation process is used in forming the well region.
摘要:
The present invention relates to integrated circuits that comprise via-level wirings and/or devices. Specifically, an integrate circuit of the present invention comprises a first line level and a second line level spaced apart from each other, with a via level therebetween. The first and second line levels both comprise metal wirings and/or electronic devices. The via level comprises at least one metal via that extends therethrough to electrically connect the first line level with the second line level. Further, the via level comprises at least one via-level metal wiring and/or electronic device.
摘要:
A Metal Insulator-Metal (MIM) capacitor is formed on a semiconductor substrate with a base comprising a semiconductor substrate having a top surface and including regions formed in the surface selected from a Shallow Trench Isolation (STI) region and a doped well having exterior surfaces coplanar with the semiconductor substrate. An ancillary MIM capacitor plate is selected either a lower electrode formed on the STI region in the semiconductor substrate or a doped well formed in the top surface of the semiconductor substrate. A capacitor HiK dielectric layer is formed on or above the MIM capacitor lower plate. A second MIM capacitor plate is formed on the HiK dielectric layer above the MIM capacitor lower plate.
摘要:
A method of forming a semiconductor structure, and the semiconductor structure so formed, wherein a transmission line, such as an inductor, is formed on a planar level above the surface of a last metal wiring level.
摘要:
A method for integrating the formation of metal-insulator-metal (MIM) capacitors within dual damascene processing includes forming a lower interlevel dielectric (ILD) layer having a lower capacitor electrode and one or more lower metal lines therein, the ILD layer having a first dielectric capping layer formed thereon. An upper ILD layer is formed over the lower ILD layer, and a via and upper line structure are defined within the upper ILD layer. The via and upper line structure are filled with a planarizing layer, followed by forming and patterning a resist layer over the planarizing layer. An upper capacitor electrode structure is defined in the upper ILD layer corresponding to a removed portion of the resist. The via, upper line structure and upper capacitor electrode structure are filled with conductive material, wherein a MIM capacitor is defined by the lower capacitor electrode, first dielectric capping layer and upper capacitor electrode structure.
摘要:
Methods of forming a high dielectric constant dielectric layer are disclosed including providing a process chamber including a holder for supporting a substrate, introducing a first gas comprising a high dielectric constant (Hi-K) dielectric precursor and an oxygen (O2) oxidant into the process chamber to form a first portion of the high dielectric constant dielectric layer on the substrate, and switching from a flow of the first gas to a flow of a second gas comprising the Hi-K dielectric precursor and an ozone (O3) oxidant to form a second portion of the high dielectric constant dielectric layer on the first portion. In an alternative embodiment, another portion can be formed on the second portion using the oxygen oxidant. The invention increases throughput by at least 20% without reliability or leakage degradation and without the need for additional equipment.
摘要:
A method for integrating the formation of metal-insulator-metal (MIM) capacitors within dual damascene processing includes forming a lower interlevel dielectric (ILD) layer having a lower capacitor electrode and one or more lower metal lines therein, the ILD layer having a first dielectric capping layer formed thereon. An upper ILD layer is formed over the lower ILD layer, and a via and upper line structure are defined within the upper ILD layer. The via and upper line structure are filled with a planarizing layer, followed by forming and patterning a resist layer over the planarizing layer. An upper capacitor electrode structure is defined in the upper ILD layer corresponding to a removed portion of the resist. The via, upper line structure and upper capacitor electrode structure are filled with conductive material, wherein a MIM capacitor is defined by the lower capacitor electrode, first dielectric capping layer and upper capacitor electrode structure.
摘要:
A method for integrating the formation of metal-insulator-metal (MIM) capacitors within dual damascene processing includes forming a lower interlevel dielectric (ILD) layer having a lower capacitor electrode and one or more lower metal lines therein, the ILD layer having a first dielectric capping layer formed thereon. An upper ILD layer is formed over the lower ILD layer, and a via and upper line structure are defined within the upper ILD layer. The via and upper line structure are filled with a planarizing layer, followed by forming and patterning a resist layer over the planarizing layer. An upper capacitor electrode structure is defined in the upper ILD layer corresponding to a removed portion of the resist. The via, upper line structure and upper capacitor electrode structure are filled with conductive material, wherein a MIM capacitor is defined by the lower capacitor electrode, first dielectric capping layer and upper capacitor electrode structure.
摘要:
A method for forming a transmission line structure for a semiconductor device includes forming an interlevel dielectric layer over a first metallization level, removing a portion of the interlevel dielectric layer and forming a sacrificial material within one or more voids created by the removal of the portion of the interlevel dielectric layer. A signal transmission line is formed in a second metallization level formed over the interlevel dielectric layer, the signal transmission line being disposed over the sacrificial material. A portion of dielectric material included within the second metallization level is removed so as to expose the sacrificial material, wherein a portion of the sacrificial material is exposed through a plurality of access holes formed through the signal transmission line. The sacrificial material is removed so as to create an air gap beneath the signal transmission line.