摘要:
Methods of fabricating a passive element and a semiconductor device including the passive element are disclosed including the use of a dummy passive element. A dummy passive element is a passive element or wire which is added to the chip layout to aid in planarization but is not used in the active circuit. One embodiment of the method includes forming the passive element and a dummy passive element adjacent to the passive element; forming a dielectric layer over the passive element and the dummy passive element, wherein the dielectric layer is substantially planar between the passive element and the dummy passive element; and forming in the dielectric layer an interconnect to the passive element through the dielectric layer and a dummy interconnect portion overlapping at least a portion of the dummy passive element. The methods eliminate the need for planarizing.
摘要:
Resistors that avoid the problems of miniaturization of semiconductor devices and a related method are disclosed. In one embodiment, a resistor includes a planar resistor material that extends vertically within at least one metal layer of a semiconductor device. In another embodiment, a resistor includes a resistor material layer extending between a first bond pad and a second bond pad of a semiconductor device. The two embodiments can be used alone or together. A related method for generating the resistors is also disclosed.
摘要:
A capacitor structure uses an aperture located within a dielectric layer in turn located over a substrate. A pair of conductor interconnection layers embedded within the dielectric layer terminates at a pair of opposite sidewalks of the aperture. A pair of capacitor plates is located upon the pair of opposite sidewalks of the aperture and contacting the pair of conductor interconnection layers, but not filling the aperture. A capacitor dielectric layer is located interposed between the pair of capacitor plates and filling the aperture. The pair of capacitor plates may be formed using an anisotropic unmasked etch followed by a masked trim etch. Alternatively, the pair of capacitor plates may be formed using an unmasked anisotropic etch only, when the pair of opposite sidewalks of the aperture is vertical and separated by a second pair of opposite sidewalks that is outward sloped.
摘要:
A capacitor structure uses an aperture located within a dielectric layer in turn located over a substrate. A pair of conductor interconnection layers embedded within the dielectric layer terminates at a pair of opposite sidewalls of the aperture. A pair of capacitor plates is located upon the pair of opposite sidewalls of the aperture and contacting the pair of conductor interconnection layers, but not filling the aperture. A capacitor dielectric layer is located interposed between the pair of capacitor plates and filling the aperture. The pair of capacitor plates may be formed using an anisotropic unmasked etch followed by a masked trim etch. Alternatively, the pair of capacitor plates may be formed using an unmasked anisotropic etch only, when the pair of opposite sidewalls of the aperture is vertical and separated by a second pair of opposite sidewalls that is outward sloped.
摘要:
A method for manufacturing a structure includes providing a structure having an insulator layer with at least one interconnect and forming a sub lithographic template mask on the insulator layer. A selective etching step is used for etching the insulator layer through the sub lithographic template mask to form sub lithographic features near the at least one interconnect. A supra lithographic blocking mask may also be utilized. In another aspect, the method includes forming pinch off sections of sub lithographic size formed in a capping layer on the insulator layer. A semiconductor structure includes an insulator layer having at least one interconnect feature and at least one column formed in the insulator layer. A plurality of sub lithographic features formed on a top portion of the insulator layer and communicating with the at least one column is also provided. The plurality of sub lithographic features have a cross section or diameter less than any of the at least one column. A gap may be prohibited from forming on or near scribe lanes and vias
摘要:
A semiconductor device having wiring levels on opposite sides and a method of fabricating a semiconductor structure having contacts to devices and wiring levels on opposite sides. The method including fabricating a device on a silicon-on-insulator substrate with first contacts to the devices and wiring levels on a first side to the first contacts, removing a lower silicon layer to expose the buried oxide layer, forming second contacts to the devices through the buried oxide layer and forming wiring levels over the buried oxide layer to the second contacts.
摘要:
In an embodiment of the invention, a dielectric material comprises a matrix of a material selected from the group consisting essentially of organic materials, inorganic materials and organo-silicate materials; a plurality of pores dispersed throughout the matrix; and a gas filling the pores. The gas is selected from the group consisting essentially of inert gases, depositing gases, and breakdown suppressing gases. The filled pore dielectric material is suitably used in a damascene wiring layer. In further embodiments, a plasma device comprises an integrated circuit (IC) chip substrate; at least one dielectric layer having a thickness on a surface of the substrate, a cavity formed in the dielectric layer, at least two electrodes disposed in the cavity; and a plasma gas filling the cavity. The plasma device can operate as a light source or as a switch.
摘要:
Structures for aligning wafers and methods for operating the same. The structure includes (a) a first semiconductor wafer including a first capacitive coupling structure, and (b) a second semiconductor wafer including a second capacitive coupling structure. The first and second semiconductor wafers are in direct physical contact with each other via a common surface. If the first and second semiconductor wafers are moved with respect to each other by a first displacement distance of 1 nm in a first direction while the first and second semiconductor wafers are in direct physical contact with each other via the common surface, then a change of at least 10−18 F in capacitance of a first capacitor comprising the first and second capacitive coupling structures results. The first direction is essentially parallel to the common surface.
摘要:
Increased protection of areas of a chip are provided by both a mask structure of increased robustness in regard to semiconductor manufacturing processes or which can be removed with increased selectivity and controllability in regard to underlying materials, or both. Mask structures are provided which exhibit an interface of a chemical reaction, grain or material type which can be exploited to enhance either or both types of protection. Structures of such masks include TERA material which can be converted or hydrated and selectively etched using a mixture of hydrogen fluoride and a hygroscopic acid or organic solvent, and two layer structures of similar or dissimilar materials.
摘要:
An interconnect structure in which the adhesion between an upper level low-k dielectric material, such as a material comprising elements of Si, C, O, and H, and an underlying diffusion capping dielectric, such as a material comprising elements of C, Si, N and H, is improved by incorporating an adhesion transition layer between the two dielectric layers. The presence of the adhesion transition layer between the upper level low-k dielectric and the diffusion barrier capping dielectric can reduce the chance of delamination of the interconnect structure during the packaging process. The adhesion transition layer provided herein includes a lower SiOx- or SiON-containing region and an upper C graded region. Methods of forming such a structure, in particularly the adhesion transition layer, are also provided.
摘要翻译:一种互连结构,其中上层低k介电材料(例如包含Si,C,O和H的元素的材料)与下面的扩散覆盖电介质(例如包含C,Si元素的材料)之间的粘合 通过在两个电介质层之间引入粘附过渡层来改善N和H。 在上层低k电介质和扩散阻挡覆盖电介质之间的粘附过渡层的存在可以减少在包装过程中互连结构的分层的可能性。 本文提供的粘合过渡层包括含低级SiO x - 或SiON的区域和上C级分区域。 还提供了形成这种结构,特别是粘附过渡层的方法。