摘要:
A method for using a silicon germanium (SiGe) surface layer to integrate a high-k dielectric layer into a semiconductor device. The method forms a SiGe surface layer on a substrate and deposits a high-k dielectric layer on the SiGe surface layer. An oxide layer, located between the high-k dielectric layer and an unreacted portion of the SiGe surface layer, is formed during one or both of deposition of the high-k dielectric layer and an annealing process after deposition of the high-k dielectric layer. The method further includes forming an electrode layer on the high-k dielectric layer.
摘要:
A SiGe thin layer semiconductor structure containing a substrate having a dielectric layer, a variable composition SixGe1-x layer on dielectric layer, and a Si cap layer on the variable composition SixGe1-x layer. The variable composition SixGe1-x layer can contain a SixGe1-x layer with a graded Ge content or a plurality of SixGe1-x sub-layers each with different Ge content. In one embodiment of the invention, the SiGe thin layer semiconductor structure contains a semiconductor substrate having a dielectric layer, a Si-containing seed layer on the dielectric layer, a variable composition SixGe1-x layer on the seed layer, and a Si cap layer on the variable composition SixGe1-x layer. A method and processing tool for fabricating the SiGe thin layer semiconductor structure are also provided.
摘要翻译:SiGe薄层半导体结构,其包含在电介质层上具有电介质层,可变成分Si x 1 Ge 1-x层的衬底和可变组件上的Si覆盖层 组合物Si 1 x 1-x <&gt;层。 可变成分Si x 1 Ge 1-x层可以含有Si x N 1 Ge 1-x层,其中a 分级的Ge含量或多个具有不同Ge含量的Si x 1 Ge 1-x N sub子层。 在本发明的一个实施例中,SiGe薄层半导体结构包含具有电介质层的半导体衬底,介电层上的含Si种子层,可变成分Si x Si -x sub>层,以及可变成分Si x 1 Ge 1-x层上的Si覆盖层。 还提供了一种用于制造SiGe薄层半导体结构的方法和处理工具。
摘要:
This invention provides a method for modifying the surface properties of a Si or Si alloy substrate by performing repeated etch-grow cycles of thermal oxide to yield a more defect free substrate with a more uniform nucleating surface which provides an improved interface for dielectric formation. Additionally, this method of processing does not expose the substrate to ambient atmosphere and preserves the improved surface until subsequent processing steps are performed.
摘要:
Methods for producing in-situ grooves in CMP pads are provided. In general, the methods for producing in-situ grooves comprise the steps of patterning a silicone lining, placing the silicone lining in, or on, a mold, adding CMP pad material to the silicone lining, and allowing the CMP pad to solidify. CMP pads comprising novel groove designs are also described. For example, described here are CMP pads comprising concentric circular grooves and axially curved grooves, reverse logarithmic grooves, overlapping circular grooves, lassajous groves, double spiral grooves, and multiply overlapping axially curved grooves. The CMP pads may be made from polyurethane, and the grooves produced therein may be made by a method from the group consisting of silicone lining, laser writing, water jet cutting, 3-D printing, thermoforming, vacuum forming, micro-contact printing, hot stamping, and mixtures thereof.
摘要:
The present application relates to polishing pads for chemical mechanical planarization (CMP) of substrates, and methods of fabrication and use thereof. The pads described in this invention are customized to polishing specifications where specifications include (but not limited to) to the material being polished, chip design and architecture, chip density and pattern density, equipment platform and type of slurry used. These pads can be designed with a specialized polymeric nano-structure with a long or short range order which allows for molecular level tuning achieving superior themo-mechanical characteristics. More particularly, the pads can be designed and fabricated so that there is both uniform and nonuniform spatial distribution of chemical and physical properties within the pads. In addition, these pads can be designed to tune the coefficient of friction by surface engineering, through the addition of solid lubricants, and creating low shear integral pads having multiple layers of polymeric material which form an interface parallel to the polishing surface. The pads can also have controlled porosity, embedded abrasive, novel grooves on the polishing surface, for slurry transport, which are produced in situ, and a transparent region for endpoint detection.
摘要:
Various examples of customized polishing pads are given, along with methods of making and using such customized polishing pads. The subject customized pads are designed and fabricated so that there is spatial distribution of chemical and physical properties of the pads that are customized for performance suited to a specific type of substrate, as well as fabrication control in implementing such customized design. Such customized design and fabrication control produce a monolithic pad thereby specifically suited to provide uniform performance of CMP of the targeted substrate.
摘要:
A polishing pad for chemical mechanical planarization of a film on a substrate is customized by obtaining one or more characteristics of a structure on a substrate. For example, when the structure is a chip formed on a semiconductor wafer, the one or more characteristics of the structure can include chip size, pattern density, chip architecture, film material, film topography, and the like. Based on the one or more characteristics of the structure, a value for the one or more chemical or physical properties of the pad is selected. For example, the one or more chemical or physical properties of the pad can include pad material hardness, thickness, surface grooving, pore size, porosity, Youngs modulus, compressibility, asperity, and the like.
摘要:
A polishing pad for chemical mechanical planarization of a film on a substrate is customized by obtaining one or more characteristics of a structure on a substrate. For example, when the structure is a chip formed on a semiconductor wafer, the one or more characteristics of the structure can include chip size, pattern density, chip architecture, film material, film topography, and the like. Based on the one or more characteristics of the structure, a value for the one or more chemical or physical properties of the pad is selected. For example, the one or more chemical or physical properties of the pad can include pad material hardness, thickness, surface grooving, pore size, porosity, Youngs modulus, compressibility, asperity, and the like.
摘要:
Disclosed are processes for stabilizing omega-3 fatty acids for use in food products. The processes permit creation of a variety of food forms and food ingredients that contain omega-3 fatty acids like docosahexaenoic acid and eicosapentaenoic acid wherein these foods and food forms are stable for months without developing fishy aromas or tastes. This stability enables the incorporation of omega-3 fatty acids into food forms such as ready to eat cereals, trail mixes, chips, granola bars, toaster pastries, baked goods, cookies, crackers, fruit pieces and fruit leathers. The processes utilize a zein coating to protect and stabilize the omega-3 fatty acids.
摘要:
A method is disclosed for preparing an expanded, vacuum puffed, dried fruit product. The method includes infusing the fruit with a low Brix infusion solution and then expanding the fruit by subjecting it to a vacuum at elevated temperature followed by drying of the fruit under a vacuum at elevated temperature and finally cooling of the fruit under lowered temperature while maintaining the vacuum. The product produced by the method is light, crisp, and has a low water activity and a low buoyant density.