Abstract:
A pedestal for a thermal treatment chamber is disclosed that includes a body consisting of an optically transparent material. The body includes a first plate with a perforated surface having a plurality of nozzles formed therein, a first portion of the plurality nozzles formed in the body at an angle that is orthogonal to a plane of the first plate, a second portion of the plurality of nozzles formed in the body in an azimuthal orientation and at an acute angle relative to the plane of the first plate, and a third portion of the plurality nozzles formed in the body in a radial orientation and at an acute angle relative to the plane of the first plate.
Abstract:
A method of post-treating a dielectric film formed on a surface of a substrate includes positioning a substrate having a dielectric film formed thereon in a processing chamber and exposing the dielectric film to microwave radiation in the processing chamber at a frequency between 5 GHz and 7 GHz.
Abstract:
The thermal processing device includes a stage, a continuous wave electromagnetic radiation source, a series of lenses, a translation mechanism, a detection module, a three-dimensional auto-focus, and a computer system. The stage is configured to receive a substrate thereon. The continuous wave electromagnetic radiation source is disposed adjacent the stage, and is configured to emit continuous wave electromagnetic radiation along a path towards the substrate. The series of lenses is disposed between the continuous wave electromagnetic radiation source and the stage, and are configured to condense the continuous wave electromagnetic radiation into a line of continuous wave electromagnetic radiation on a surface of the substrate. The translation mechanism is configured to translate the stage and the line of continuous wave electromagnetic radiation relative to one another. The detection module is positioned within the path, and is configured to detect continuous wave electromagnetic radiation.
Abstract:
The thermal processing device includes a stage, a continuous wave electromagnetic radiation source, a series of lenses, a translation mechanism, a detection module, a three-dimensional auto-focus, and a computer system. The stage is configured to receive a substrate thereon. The continuous wave electromagnetic radiation source is disposed adjacent the stage, and is configured to emit continuous wave electromagnetic radiation along a path towards the substrate. The series of lenses is disposed between the continuous wave electromagnetic radiation source and the stage, and are configured to condense the continuous wave electromagnetic radiation into a line of continuous wave electromagnetic radiation on a surface of the substrate. The translation mechanism is configured to translate the stage and the line of continuous wave electromagnetic radiation relative to one another. The detection module is positioned within the path, and is configured to detect continuous wave electromagnetic radiation.
Abstract:
The present disclosure provides systems and methods for processing channel structures of substrates that include positioning the substrate in a first processing chamber having a first processing volume. The substrate includes a channel structure with high aspect ratio features having aspect ratios greater than about 20:1. The method includes forming a silicon-containing layer over the channel structure to a hydrogen-or-deuterium plasma in the first processing volume at a flow rate of about 10 sccm to about 5000 sccm. The substrate is maintained at a temperature of about 100° C. to about 1100° C. during the exposing, the exposing forming a nucleated substrate. Subsequent to the exposing a thermal anneal operation is performed on the substrate.
Abstract:
A method and apparatus are provided for treating a substrate. The substrate is positioned on a support in a thermal treatment chamber. Electromagnetic radiation is directed toward the substrate to anneal a portion of the substrate. Other electromagnetic radiation is directed toward the substrate to preheat a portion of the substrate. The preheating reduces thermal stresses at the boundary between the preheat region and the anneal region. Any number of anneal and preheat regions are contemplated, with varying shapes and temperature profiles, as needed for specific embodiments. Any convenient source of electromagnetic radiation may be used, such as lasers, heat lamps, white light lamps, or flash lamps.
Abstract:
A method is disclosed for crystallizing semiconductor material so that it has large grains of uniform size comprising delivering a first energy exposure of high intensity and short duration, and then delivering at least one second energy exposures of low intensity and long duration. The first energy exposure heats the substrate to a high temperature for a duration less than about 0.1 sec. The second energy exposure heats the substrate to a lower temperature for a duration greater than about 0.1 sec.
Abstract:
Embodiments of the present invention provide an edge ring for supporting a substrate with increased temperature uniformity. More particularly, embodiments of the present invention provide an edge ring having one or more fins formed on an energy receiving surface of the edge ring. The fins may have at least one sloped side relative to a main body of the edge ring.
Abstract:
Aspects of the present disclosure relation to systems, methods, and apparatus for correcting thermal processing of substrates. In one aspect, a corrective absorption factor curve having a plurality of corrective absorption factors is generated.
Abstract:
Embodiments of the disclosure generally relate to a semiconductor processing chamber. In one embodiment, semiconductor processing chamber is disclosed and includes a chamber body having a bottom and a sidewall defining an interior volume, the sidewall having a substrate transfer port formed therein, and one or more absorber bodies positioned in the interior volume in a position opposite of the substrate transfer port.