Abstract:
Methods for modulating local stress and overlay error of one or more patterning films may include modulating a gas flow profile of gases introduced into a chamber body, flowing gases within the chamber body toward a substrate, rotating the substrate, and unifying a center-to-edge temperature profile of the substrate by controlling the substrate temperature with a dual zone heater. A chamber for depositing a film may include a chamber body comprising one or more processing regions. The chamber body may include a gas distribution assembly having a blocker plate for delivering gases into the one or more processing regions. The blocker plate may have a first region and a second region, and the first region and second region each may have a plurality of holes. The chamber body may have a dual zone heater.
Abstract:
Implementations of the present disclosure generally relate to the fabrication of integrated circuits. More particularly, the implementations described herein provide techniques for deposition of boron-carbon films on a substrate. In one implementation, a method of processing a substrate is provided. The method comprises flowing a hydrocarbon-containing gas mixture into a processing volume of a processing chamber having a substrate positioned therein, wherein the substrate is heated to a substrate temperature from about 400 degrees Celsius to about 700 degrees Celsius, flowing a boron-containing gas mixture into the processing volume and generating an RF plasma in the processing volume to deposit a boron-carbon film on the heated substrate, wherein the boron-carbon film has an elastic modulus of from about 200 to about 400 GPa and a stress from about −100 MPa to about 100 MPa.
Abstract:
The present disclosure generally relates to processing chamber seasoning layers having a graded composition. In one example, the seasoning layer is a boron-carbon-nitride (BCN) film. The BCN film may have a greater composition of boron at the base of the film. As the BCN film is deposited, the boron concentration may approach zero, while the relative carbon and nitrogen concentration increases. The BCN film may be deposited by initially co-flowing a boron precursor, a carbon precursor, and a nitrogen precursor. After a first period of time, the flow rate of the boron precursor may be reduced. As the flow rate of boron precursor is reduced, RF power may be applied to generate a plasma during deposition of the seasoning layer.
Abstract:
Embodiments described herein relate to a faceplate for improving film uniformity. A semiconductor processing apparatus includes a pedestal, an edge ring and a faceplate having distinct regions with differing hole densities. The faceplate has an inner region and an outer region which surrounds the inner region. The inner region has a greater density of holes formed therethrough when compared to the outer region. The inner region is sized to correspond with a substrate being processed while the outer region is sized to correspond with the edge ring.
Abstract:
Implementations of the present disclosure generally relate to the fabrication of integrated circuits. More particularly, the implementations described herein provide techniques for deposition of boron-carbon films on a substrate. In one implementation, a method of processing a substrate is provided. The method comprises flowing a hydrocarbon-containing gas mixture into a processing volume of a processing chamber having a substrate positioned therein, wherein the substrate is heated to a substrate temperature from about 400 degrees Celsius to about 700 degrees Celsius, flowing a boron-containing gas mixture into the processing volume and generating an RF plasma in the processing volume to deposit a boron-carbon film on the heated substrate, wherein the boron-carbon film has an elastic modulus of from about 200 to about 400 GPa and a stress from about −100 MPa to about 100 MPa.
Abstract:
The present disclosure generally relates to a radiation shield for a process chamber which improves substrate temperature uniformity. The radiation shield may be disposed between a slit valve door of the process chamber and a substrate support disposed within the process chamber. In some embodiments, the radiation shield may be disposed under a heater of the process chamber. Furthermore, the radiation shield may block radiation and/or heat supplied from the process chamber, and in some embodiments, the radiation shield may absorb and/or reflect radiation, thus providing improved temperature uniformity as well as improving a planar profile of the substrate.
Abstract:
Implementations of the present disclosure generally relate to the fabrication of integrated circuits. More particularly, the implementations described herein provide techniques for deposition of boron-carbon films on a substrate. In one implementation, a method of processing a substrate is provided. The method comprises flowing a hydrocarbon-containing gas mixture into a processing volume of a processing chamber having a substrate positioned therein, wherein the substrate is heated to a substrate temperature from about 400 degrees Celsius to about 700 degrees Celsius, flowing a boron-containing gas mixture into the processing volume and generating an RF plasma in the processing volume to deposit a boron-carbon film on the heated substrate, wherein the boron-carbon film has an elastic modulus of from about 200 to about 400 GPa and a stress from about −100 MPa to about 100 MPa.
Abstract:
Embodiments disclosed herein relate to methods for forming memory devices, and more specifically to improved methods for forming a dielectric encapsulation layer over a memory material in a memory device. In one embodiment, the method includes thermally depositing a first material over a memory material at a temperature less than the temperature of the thermal budget of the memory material, exposing the first material to nitrogen plasma to incorporate nitrogen in the first material, and repeating the thermal deposition and nitrogen plasma operations to form a hermetic, conformal dielectric encapsulation layer over the memory material. Thus, a memory device having a hermetic, conformal dielectric encapsulation layer over the memory material is formed.
Abstract:
Implementations of the present disclosure generally relate to the fabrication of integrated circuits. More particularly, the implementations described herein provide techniques for deposition of boron-containing amorphous carbon films on a substrate with reduced particle contamination. In one implementation, the method comprises flowing a hydrocarbon-containing gas mixture into a processing volume having a substrate positioned therein, flowing a boron-containing gas mixture into the processing volume, stabilizing the pressure in the processing volume for a predefined RF-on delay time period, generating an RF plasma in the processing volume after the predefined RF-on delay time period expires to deposit a boron-containing amorphous film on the substrate, exposing the processing volume of the process chamber to a dry cleaning process and depositing an amorphous boron season layer over at least one surface in the processing volume of the process chamber.
Abstract:
Methods for modulating local stress and overlay error of one or more patterning films may include modulating a gas flow profile of gases introduced into a chamber body, flowing gases within the chamber body toward a substrate, rotating the substrate, and unifying a center-to-edge temperature profile of the substrate by controlling the substrate temperature with a dual zone heater. A chamber for depositing a film may include a chamber body comprising one or more processing regions. The chamber body may include a gas distribution assembly having a blocker plate for delivering gases into the one or more processing regions. The blocker plate may have a first region and a second region, and the first region and second region each may have a plurality of holes. The chamber body may have a dual zone heater.