摘要:
Forming of a first silicon oxide film is started on an internal surface of a trench formed on a surface or upwardly of a semiconductor substrate according to an HDP technique. Then, deposition of the first silicon oxide film stops before an opening of the trench closes. Further, the first silicon oxide film deposited in the vicinity of an opening is etched, and a second silicon oxide film is formed on the first silicon oxide film deposited on the bottom of the trench according to the HDP technique. In this manner, the first and second silicon oxide films can be laminated on the bottom of the trench.
摘要:
Forming of a first silicon oxide film is started on an internal surface of a trench formed on a surface or upwardly of a semiconductor substrate according to an HDP technique. Then, deposition of the first silicon oxide film stops before an opening of the trench closes. Further, the first silicon oxide film deposited in the vicinity of an opening is etched, and a second silicon oxide film is formed on the first silicon oxide film deposited on the bottom of the trench according to the HDP technique. In this manner, the first and second silicon oxide films can be laminated on the bottom of the trench.
摘要:
Forming of a first silicon oxide film is started on an internal surface of a trench formed on a surface or upwardly of a semiconductor substrate according to an HDP technique. Then, deposition of the first silicon oxide film stops before an opening of the trench closes. Further, the first silicon oxide film deposited in the vicinity of an opening is etched, and a second silicon oxide film is formed on the first silicon oxide film deposited on the bottom of the trench according to the HDP technique. In this manner, the first and second silicon oxide films can be laminated on the bottom of the trench.
摘要:
In a method of manufacturing a semiconductor device including a semiconductor element formed on a semiconductor substrate, an SiOF film is formed at least on the top surfaces of metal wirings under condition that an in-chamber pressure is 5 mTorr or lower. The SiOF film can thus be buried into a space between the metal wirings without causing any void and the capacitance between the wirings can be prevented from increasing, while preventing the metal wirings from being damaged and preventing the aspect ratio from increasing.
摘要:
A plasma CVD device having a chamber, an upper electrode provided in the chamber, an under electrode provided in the chamber to be opposite to the upper electrode and to mount a sample thereon, and a plurality of power sources having a different frequency connected to the upper electrode. Gas is introduced into the chamber of the plasma CVD device, the gas contains at least an organic silicon compound, CF.sub.4 and O.sub.2, and has an element ratio (F/Si) of silicon (Si), constituting the organic silicon compound, to fluorine (F), constituting CF.sub.4, to be set to 15 or more. Si(OC.sub.2 H.sub.5).sub.4 or Si(OCH.sub.3).sub.4 is used as an organic silicon compound.
摘要:
There is provided a semiconductor device manufacturing method that comprises a first step of loading a processed substrate in a reaction chamber, a second step of introducing a reaction gas into the reaction chamber at a predetermined flow rate, a third step of maintaining an interior of the reaction chamber at a predetermined pressure, a fourth step of starting generation of plasma by supplying a high frequency power to an electrode arranged in the reaction chamber, a fifth step of applying a predetermined process to the processed substrate, and a sixth step of stopping generation of the plasma by stopping supply of the high frequency power after the predetermined process is completed, wherein the reaction gas is introduced continuously when the generation of the plasma is stopped.
摘要:
Ozonizer (10) which supplies a feed gas to ozone generating cell (11) under application of a high voltage and which delivers an ozone gas through an ozone gas transport path (consisting of pipes (14) and (15)) as it has been generated in said ozone generating cell (11) is characterized in that the ozone gas transport path is furnished with means for removing at least one of NOx, HF and SOx (in the drawings, the means is for removing NOx) and that the ozone gas from the ozone generating cell (11) is passed through said removing means, whereby at least one of NOx, HF and SOx in said ozone gas is removed before it is delivered to a subsequent stage. The product ozone is not contaminated with Cr compounds at all or insufficiently contaminated to cause any practical problems in the fabrication of highly integrated semiconductor devices. Alternatively, ozonizer (10) which comprises an ozone generating cell (11) having an inlet (8) for supplying a feed gas, high voltage applying means (35) and an outlet (29) for discharging the ozone generated, and ozone delivery paths (30) and (31) for delivering the generated ozone is characterized in that oxygen (1) supplemented with 10-20 vol % of carbon dioxide and/or carbon monoxide (2) is used as the feed gas. The thus produced ozone is significantly low in the level of Cr compounds and, hence, can suitably be used in the formation of metal oxides, in particular, silicon oxide.
摘要:
A method for fabricating a high density semiconductor integrated circuit device with a multilayer interconnect wiring structure is disclosed. This structure has a low-dielectric constant insulator film including an organic thin-film with its dielectric constant ranging from about 2.0 to about 2.4. To fabricate the multilayer wiring structure, a substrate with an inorganic film for use as an underlayer dielectric film is prepared. Then, apply plasma processing, such as plasma-assisted chemical vapor-phase growth, to a top surface of the inorganic underlayer dielectric film in environment that contains therein organic silane-based chemical compounds, thereby to form on the inorganic film surface a hydrophobic surface layer with a contact angle with water being 50° or higher. Next, form on the plasma-processed hydrophobic surface an organic film including a fluorinated aromatic carbon hydride polymer film. The resulting adhesion between the stacked inorganic and organic films is thus enhanced while at the same time reducing or minimizing electrical resistivity and capacitance of the multilayer structure.
摘要:
In an improved ozonizer, at least those parts of an ozone gas delivery path located downstream of an ozone generating cell which are to come into contact with ozone gas are either composed of or coated with at least one ozone-resistant, Cr-free material selected from among aluminum (Al), an aluminum alloy, Teflon, fluorinated nickel, a nickel alloy, a silicon oxide based glass and a high-purity aluminium oxide. The ozonizer is capable of producing ozone that is not contaminated with Cr compounds at all or which is insufficiently contaminated to cause any practical problem in the fabrication of highly integrated semiconductor devices.
摘要:
A method for fabricating a high density semiconductor integrated circuit device with a multilayer interconnect wiring structure is disclosed. This structure has a low-dielectric constant insulator film including an organic thin-film with its dielectric constant ranging from about 2.0 to about 2.4. To fabricate the multilayer wiring structure, a substrate with an inorganic film for use as an underlayer dielectric film is prepared. Then, apply plasma processing, such as plasma-assisted chemical vapor-phase growth, to a top surface of the inorganic underlayer dielectric film in environment that contains therein organic silane-based chemical compounds, thereby to form on the inorganic film surface a hydrophobic surface layer with a contact angle with water being 50° or higher. Next, form on the plasma-processed hydrophobic surface an organic film including a fluorinated aromatic carbon hydride polymer film. The resulting adhesion between the stacked inorganic and organic films is thus enhanced while at the same time reducing or minimizing electrical resistivity and capacitance of the multilayer structure.