摘要:
A membrane separation device is disclosed along with systems and methods employing the device in blood processing procedures. In one embodiment, a spinning membrane separator is provided in which at least two zones or regions are created in the gap between the membrane and the shell, such that mixing of the fluid between the two regions is inhibited by a radial rib associated with the membrane that decreases the gap between the membrane and the shell to define two fluid regions, the ridge isolating the fluid in the two regions to minimize mixing between the two. Automated systems and methods are disclosed for separating a unit of previously collected whole blood into components, such as concentrated red cells and plasma, for collecting red cells and plasma directly from a donor in a single pass, and for cell washing. Data management systems and methods and priming methods are also disclosed.
摘要:
A membrane separation device is disclosed along with systems and methods employing the device in blood processing procedures. In one embodiment, a spinning membrane separator is provided in which at least two zones or regions are created in the gap between the membrane and the shell, such that mixing of the fluid between the two regions is inhibited by a radial rib associated with the membrane that decreases the gap between the membrane and the shell to define two fluid regions, the ridge isolating the fluid in the two regions to minimize mixing between the two. Automated systems and methods are disclosed for separating a unit of previously collected whole blood into components, such as concentrated red cells and plasma, for collecting red cells and plasma directly from a donor in a single pass, and for cell washing. Data management systems and methods and priming methods are also disclosed.
摘要:
A membrane separation device is disclosed along with systems and methods employing the device in blood processing procedures. In one embodiment, a spinning membrane separator is provided in which at least two zones or regions are created in the gap between the membrane and the shell, such that mixing of the fluid between the two regions is inhibited by a radial rib associated with the membrane that decreases the gap between the membrane and the shell to define two fluid regions, the ridge isolating the fluid in the two regions to minimize mixing between the two. Automated systems and methods are disclosed for separating a unit of previously collected whole blood into components, such as concentrated red cells and plasma, for collecting red cells and plasma directly from a donor in a single pass, and for cell washing. Data management systems and methods and priming methods are also disclosed.
摘要:
Certain examples provide systems, methods, and apparatus to provide information regarding blood collection instruments via a mobile device. An example method for blood collection instrument management includes providing a graphical representation of one or more blood collection instruments with a visual indication of a status for each instrument. The graphical representation is to visually convey information regarding each of the one or more blood collection instruments and is selectable by a user to provide additional information regarding each of the one or more blood collection instruments. The method includes facilitating access to troubleshoot and interact with the one or more blood collection instruments via the mobile device. The method includes dynamically updating the status for each instrument via communication between the mobile device and one or more blood collection facilities at which the one or more blood collection instruments are located.
摘要:
A biological suspension processing system is disclosed that may include a suspension treatment device for treating one or more components of a biological suspension, a first fluid flow path for introducing a suspension into the treatment device and a second fluid flow path for withdrawing a constituent of the suspension from the device. At least on microelectromechanical (MEM) sensor communicates with one of the fluid flow paths for sensing a selected characteristic of the fluid therewith. The MEM sensor may be located elsewhere, such as on a container or bag and communicate with the interior for sensing a characteristic of the fluid contained therein. A wide variety of characteristics may be sensed, such as flow rate, pH, cell type, cell antigenicity, DNA, viral or bacterial presence, cholesterol, hematocrit, cell concentration, cell count, partial pressure, pathogen presence, or viscosity.
摘要:
A method is disclosed for resuspending a concentrated blood component collected in a single-use processing chamber that is mounted to a rotatable support of a centrifugal collection system. A resuspension solution is introduced to the single-use processing chamber constraining the concentrated blood component. The rotatable support with the single-use processing chamber mounted thereto is removed from the centrifugal collection system and mounted to a resuspension device. The device is then activated for a period of time sufficient to resuspend the concentrated blood component in the resuspension solution. In another aspect, the resuspension device is configured to impart a reciprocating arcuate motion to the support and its associated single-use processing chamber. A frequency of approximately 300 to 325 rpm over a period of time of approximately 1.5 to 2.5 minutes has been found effective for resuspending platelets. Reciprocation through an arc of less than 200° is provided.
摘要:
Method and apparatus are disclosed for forming a sealed communication between conduits or conduit subassemblies, each of which has a wall with an exterior surface, and at least one of the walls includes an electrically conductive portion. The exterior surfaces may be brought into a facing relationship, and each conductive portion is heated sufficiently to sterilize the exterior surfaces of the walls by generating electrical current in the conductive portion, such as by application of a voltage or by induction. An aperture is then provided, as by an aperture-forming member, through the facing walls to provide communication between the conduits or conduit subassemblies.
摘要:
Certain examples provide systems, methods, and apparatus to provide information regarding blood collection instruments via a mobile device. An example method for blood collection instrument management includes providing a graphical representation of one or more blood collection instruments with a visual indication of a status for each instrument. The graphical representation is to visually convey information regarding each of the one or more blood collection instruments and is selectable by a user to provide additional information regarding each of the one or more blood collection instruments. The method includes facilitating access to troubleshoot and interact with the one or more blood collection instruments via the mobile device. The method includes dynamically updating the status for each instrument via communication between the mobile device and one or more blood collection facilities at which the one or more blood collection instruments are located.
摘要:
Fluid flow conduits (14a, 14b) and apparatus (40) and methods for joining the conduits (14a, 14b), preferably in a sterile manner, are disclosed. Each conduit (14, 14b) has a polymeric open end that is sealed by a sealing member (26a, 26b) that may include a heating element (28). The polymeric end material is melted, the sealing members (26a, 26b) are moved to expose the melted open ends of the conduits (14a, 14b) and the ends are brought together to form a fused or welded connection (12) between the conduits (14a, 14b).
摘要:
Method and apparatus are disclosed for forming a sealed communication between conduits or conduit subassemblies, each of which has a wall with an exterior surface, and at least one of the walls includes an electrically conductive portion. The exterior surfaces may be brought into a facing relationship, and each conductive portion is heated sufficiently to sterilize the exterior surfaces of the walls by generating electrical current in the conductive portion, such as by application of a voltage or by induction. An aperture is then provided, as by an aperture-forming member, through the facing walls to provide communication between the conduits or conduit subassemblies.