Abstract:
It was found out that when radicals generated by plasma are fed to a treatment chamber via a plurality of holes (111) formed on a partition plate which separates a plasma-forming chamber (108) from the treatment chamber, and the radicals are mixed with a treatment gas which is separately fed to the treatment chamber, the excitation energy of the radicals is suppressed and thereby the substrate surface treatment at high Si-selectivity becomes possible, which makes it possible to conduct the surface treatment of removing native oxide film and organic matter without deteriorating the flatness of the substrate surface. The radicals in the plasma are fed to the treatment chamber via radical-passing holes (111) of a plasma-confinement electrode plate (110) for plasma separation, the treatment gas is fed to the treatment chamber (121) to be mixed with the radicals in the treatment chamber, and then the substrate surface is cleaned by the mixed atmosphere of the radicals and the treatment gas.
Abstract:
It is an object of the present invention to provide an electronic component manufacturing method, capable of suppressing reduction in a trench opening and suppressing diffusion of a metal film embedded in a trench. An embodiment of the present invention is an electronic component manufacturing method, including the steps of: forming a first electrode constituting layer (e.g., a TiAl film) in a recess (e.g., a trench) formed in a workpiece; forming an ultrathin barrier layer (e.g., a TiAlN film) by forming a nitride layer by plasma-nitriding a surface of the first electrode constituting layer; and forming a second electrode constituting layer (e.g., an Al wiring layer) on the ultrathin barrier layer.
Abstract:
The present invention provides a method and apparatus for manufacturing a semiconductor device using a PVD method and enabling achievement of a desired effective work function and reduction in leak current without increasing an equivalent oxide thickness. A method for manufacturing a semiconductor device in an embodiment of the present invention includes the steps of: preparing a substrate on which an insulating film having a relative permittivity higher than that of a silicon oxide film is formed; and depositing a metal nitride film on the insulating film. The metal nitride depositing step is a step of sputtering deposition in an evacuatable chamber using a metal target and a cusp magnetic field formed over a surface of the metal target by a magnet mechanism in which magnet pieces are arranged as grid points in such a grid form that the adjacent magnet pieces have their polarities reversed from each other.
Abstract:
The present invention provides a TMR element manufacturing apparatus capable of reducing contamination of impurities in magnetic films. According to an embodiment of the present invention, a tunnel magneto-resistance element manufacturing apparatus includes: a load lock device to load and unload a substrate from and to an outside; a first substrate transfer device that is connected to the load lock device, at least one substrate process device being connected to the first substrate transfer device; a first evacuation unit provided in the first substrate transfer device; a second substrate transfer device that is connected to the first substrate transfer device, multiple substrate process devices being connected to the second substrate transfer device; and a second evacuation unit provided in the second substrate transfer device. At least one of the multiple substrate process devices connected to the second substrate transfer device is an oxidation device.