Abstract:
Embodiments disclosed herein generally relate to an optical device for transferring light between a first and second waveguide. The optical device may generally include the first waveguide, a first support member and a base on which the first waveguide and first support member are disposed. The optical device may further include a second support member wherein the first support member is disposed between the second support member and the base. The second support member comprises at least one groove. The second waveguide may be disposed at least partially in the groove such that the second waveguide is between the first and second support members. The optical device may further include at least one lens disposed between the first waveguide and the second waveguide to transfer an optical signal between the first and second waveguides through the lens.
Abstract:
An optical assembly package is provided for the optical receive components of an optical transceiver. The optical assembly package includes a receptacle subassembly configured to receive an end of an optical fiber. A housing is provided having an opening at one end configured to receive the receptacle assembly. Optical routing and wavelength demultiplexing elements are mounted to a bottom wall of the housing. An electrical subassembly comprising a support plate, a circuit board mounted on the support plate, an integrated circuit mounted to the circuit board, and a plurality of photodetectors mounted to the support plate proximate an edge of the circuit board. The electrical subassembly is positioned a stacked arrangement beneath the housing to minimize an overall length of the optical assembly package.
Abstract:
An opto-electronic assembly is provided comprising a substrate (generally of silicon or glass) for supporting a plurality of interconnected optical and electrical components. A layer of sealing material is disposed to outline a defined peripheral area of the substrate. A molded glass lid is disposed over and bonded to the substrate, where the molded glass lid is configured to create a footprint that matches the defined peripheral area of the substrate. The bottom surface of the molded glass lid includes a layer of bonding material that contacts the substrate's layer of sealing material upon contact, creating a bonded assembly. In one form, a wafer level assembly process is proposed where multiple opto-electronic assemblies are disposed on a silicon wafer and multiple glass lids are molded in a single sheet of glass that is thereafter bonded to the silicon wafer.
Abstract:
An arrangement for providing passive alignment of optical components on a common substrate uses a set of reference cavities, where each optical device is positioned within a separate reference cavity. The reference cavities are formed to have a predetermined depth, with perimeters slightly larger than the footprint of their associated optical components. The reference cavity includes at least one right-angle corner that is used as a registration corner against which a right-angle corner of an associated optical component is positioned. The placement of each optical component in its own reference cavity allows for passive optical alignment to be achieved by placing each component against its predefined registration corner.
Abstract:
An apparatus for providing single mode optical signal coupling between an opto-electronic transceiver and a single mode optical fiber array takes the form of a lens array and a ferrule component. The lens array includes a plurality of separate lens element disposed to intercept a like plurality of single mode optical output signal from the opto-electronic transceiver and provide as an output a focused version thereof. The ferrule component includes a plurality of single mode fiber stubs that are passively aligned with the lens array and support the transmission of the focused, single mode optical output signals towards the associated single mode optical fiber array.
Abstract:
A wafer scale implementation of an opto-electronic transceiver assembly process utilizes a silicon wafer as an optical reference plane and platform upon which all necessary optical and electronic components are simultaneously assembled for a plurality of separate transceiver modules. In particular, a silicon wafer is utilized as a “platform” (interposer) upon which all of the components for a multiple number of transceiver modules are mounted or integrated, with the top surface of the silicon interposer used as a reference plane for defining the optical signal path between separate optical components. Indeed, by using a single silicon wafer as the platform for a large number of separate transceiver modules, one is able to use a wafer scale assembly process, as well as optical alignment and testing of these modules.
Abstract:
An apparatus for providing self-aligned optical coupling between an opto-electronic substrate and a fiber array, where the substrate is enclosed by a transparent lid such that the associated optical signals enter and exit the arrangement through the transparent lid. The apparatus takes the form of a two-part connectorized fiber array assembly where the two pieces uniquely mate to form a self-aligned configuration. A first part, in the form of a plate, is attached to the transparent lid in the area where the optical signals pass through. The first plate includes a central opening with inwardly-tapering sidewalls surrounding its periphery. A second plate is also formed to include a central opening and has a lower protrusion with inwardly-tapering sidewalls that mate with the inwardly-tapering sidewalls of the first plate to form the self-aligned connectorized fiber array assembly. The fiber array is then attached to the second plate in a self-aligned fashion.
Abstract:
Techniques and configurations are provided for packaging optoelectronic devices. In particular, a lid component of an optoelectronic device is provided, and the lid component is configured to cover active components of the optoelectronic device. An optically transparent wall is also provided. The optically transparent wall is coated with an anti-reflective material and configured to interface with a section of the lid component. The optically transparent wall is joined with the section of the lid component such that the optically transparent wall and the lid provide a seal for the active components of the optoelectronic device. Additionally, the lid component has a top surface and a plurality of side surfaces that are coupled to the top surface. An optically transparent wall coated with an anti-reflective material adhesively joins to the top surface and one or more side surfaces.
Abstract:
An optical device may include a waveguide converter that couples an external light-carrying medium to a waveguide embedded within the optical device. In one embodiment, the optical signal emitted from the light-carrying medium enters the converter which focuses the signal (e.g., shrinks the mode of the optical signal) to better match the physical dimensions of the waveguide. Using the converter may improve transmission efficiency relative to directly coupling (e.g., butt-coupling) the light-carrying medium to the waveguide. Specifically, the converter may enable the light-carrying medium to transmit the optical signal directly into the optical device without the use of any external lenses, even if the waveguide is a sub-micron waveguide.
Abstract:
An arrangement for providing passive alignment of optical components on a common substrate uses a set of reference cavities, where each optical device is positioned within a separate reference cavity. The reference cavities are formed to have a predetermined depth, with perimeters slightly larger than the footprint of their associated optical components. The reference cavity includes at least one right-angle corner that is used as a registration corner against which a right-angle corner of an associated optical component is positioned. The placement of each optical component in its own reference cavity allows for passive optical alignment to be achieved by placing each component against its predefined registration corner.