摘要:
Methods and apparatus are provided for the fabrication of microscale, including micron and sub-micron scale, including nanoscale, devices. Electronic transport of movable component devices is utilized through a fluidic medium to effect transport to a desired target location on a substrate or motherboard. Forces include electrophoretic force, electroosmotic force, electrostatic force and/or dielectrophoretic force. In the preferred embodiment, free field electroosmotic forces are utilized either alone, or in conjunction with, other forces. These forces may be used singly or in combination, as well as in conjunction with yet other forces, such as fluidic forces, mechanical forces or thermal convective forces. Transport may be effected through the use of driving electrodes so as to transport the component device to yet other connection electrodes. In certain embodiments, the component devices may be attached to the target device using a solder reflow step.
摘要:
Methods and apparatus are provided for the fabrication of microscale, including micron, sub-micron, and nanoscale, devices. Electronic transport of movable component devices is utilized through a fluidic medium to effect transport to a desired target location on a substrate or motherboard. Forces include electrophoretic force, electroosmotic force, electrostatic force and/or dielectrophoretic force. In the preferred embodiment, free field electroosmotic forces are utilized either alone, or in conjunction with, other forces. These forces may be used singly or in combination, as well as in conjunction with yet other forces, such as fluidic forces, mechanical forces or thermal convective forces. Transport may be effected through the use of driving electrodes so as to transport the component device to yet other connection electrodes. In certain embodiments, the connection electrodes may also be utilized, either alone or in combination with driving electrodes, to electronically transport the component device to the connection electrodes.
摘要:
Methods are provided for the fabrication of microscale, including micron and sub-micron scale, including nanoscale, devices. Electronic transport of movable component devices is utilized through a fluidic medium to effect transport to a desired target location on a substrate or motherboard. Forces include electrophoretic force, electroosmotic force, electrostatic force and/or dielectrophoretic force. In the preferred embodiment, free field electroosmotic forces are utilized either alone, or in conjunction with, other forces. These forces may be used singly or in combination, as well as in conjunction with yet other forces, such as fluidic forces, mechanical forces or thermal convective forces. Transport may be effected through the use of driving electrodes so as to transport the component device to yet other connection electrodes. In certain embodiments, the component devices may be attached to the target device using a solder reflow step.
摘要:
A platform for photoelectrophoretic transport and electronic hybridization of fluorescence labeled DNA oligonucleotides in a low conductivity electrolyte is described. A chemically stabilized semiconductor photodiode or photoconductor surface is coated with a streptavidin-agarose permeation layer. Micro-illumination of the surface generates photo-electrochemical currents that are used to electrophoretically transport and attach capture strands, preferably biotinylated DNA, to arbitrarily selected locations. The same process is then used to transport and electronically hybridize fluorescence labeled DNA target strands to the previously attached capture strands. Signal detection is accomplished either by a fluorescence scanner or a CCD camera. This represents a flexible electronic DNA assay platform that need not rely on pre-patterned microelectronic arrays.
摘要:
Methods are provided for the fabrication of microscale, including micron and sub-micron scale, including nanoscale, devices. Electronic transport of movable component devices is utilized through a fluidic medium to effect transport to a desired target location on a substrate or motherboard. Forces include electrophoretic force, electroosmotic force, electrostatic force and/or dielectrophoretic force. In the preferred embodiment, free field electroosmotic forces are utilized either alone, or in conjunction with, other forces. These forces may be used singly or in combination, as well as in conjunction with yet other forces, such as fluidic forces, mechanical forces or thermal convective forces. Transport may be effected through the use of driving electrodes so as to transport the component device to yet other connection electrodes. In certain embodiments, the component devices may be attached to the target device using a solder reflow step.