摘要:
Absorbable composite materials are described that comprise a collagen matrix reinforced with a layer of a bioabsorbable polymer. A chemotherapeutic agent is dispersed in the composite material. The layer of bioabsorbable polymer is preferably a woven, nonwoven or knitted mesh layer of a synthetic bioabsorbable polymer such as polylactic/polyglycolic acid copolymer, or oxidised regenerated cellulose. The chemotherapeutic agent may be an antibiotic, an anaesthetic, an antiseptic or an anti-inflammatory. Strips of the composite material are inserted into the periodontal pocket, where they are retained in place and provide effective sustained release of the chemotherapeutic agent over an extended period.
摘要:
Stable oil-in-water emulsions are prepared by mixing oil, water and an insoluble protein at high shear. By varying the amount of insoluble protein the emulsions may be made liquid, semisolid or solid. The preferred insoluble proteins are insoluble fibrous proteins such as collagen. The emulsions may be medicated with hydrophilic or hydrophobic pharmacologically active agents and are useful as or in wound dressings or ointments.
摘要:
A composite surgical material comprising a collagen matrix reinforced by a layer of a synthetic bioabsorbable material such as polylactide/polyglycolide or oxidized regenerated cellulose, and wherein oil droplets are dispersed in the collagen matrix. The oil droplets comprise 1% to 75% of the weight of the composite and result in improved leak-proofing of the composite. The composite, in the form of a sheet or a tube, is especially useful as a temporary, fully bioabsorbable prosthesis, for membranes or blood vessels where a highly leak-proof prosthesis is required. The invention also provides a method of making a composite surgical material comprising the steps of: providing a layer of a synthetic bioabsorbable material; providing a dispersion of collagen in an oil-in-water emulsion; coating at least one face of the layer of synthetic bioabsorbable material with the said dispersion; and drying the composite material thus obtained.
摘要:
A process for preparing a composite comprising an insoluble protein matrix and an oleaginous material, which is useful as a material for surgical dressings and biomedical implants, and as a cosmetic material for application to the skin. The process comprises the steps of mixing a protein, the oleaginous material and water to form an emulsion of the oleaginous material in an aqueous dispersion of the protein, and subsequently drying or freeze-drying the emulsion to form a film or a sponge.
摘要:
A composite surgical material comprising a collagen matrix reinforced by a layer of a synthetic bioabsorbable material such as polylactide/polyglycolide or oxidised regenerated cellulose, and wherein oil droplets are dispersed in the collagen matrix. The oil droplets comprise 1% to 75% of the weight of the composite and result in improved leak-proofing of the composite. The composite, in the form of a sheet or a tube, is especially useful as a temporary, fully bioabsorbable prosthesis, for membranes or blood vessels where a highly leak-proof prosthesis is required. The invention also provides a method of making a composite surgical material comprising the steps of: providing a layer of a synthetic bioabsorbable material; providing a dispersion of collagen in an oil-in-water emulsion; coating at least one face of the layer of synthetic bioabsorbable material with the said dispersion; and drying the composite material thus obtained.
摘要:
A composite surgical material comprising a collagen matrix reinforced by a layer of a synthetic bioabsorbable material such as polylactide/polyglycolide or oxidized regenerated cellulose, and wherein oil droplets are dispersed in the collagen matrix. The oil droplets comprise 1% to 75% of the weight of the composite and result in improved leak-proofing of the composite. The composite, in the form of a sheet or a tube, is especially useful as a temporary, fully bioabsorbable prosthesis, for membranes or blood vessels where a highly leak-proof prosthesis is required. The invention also provides a method of making a composite surgical material comprising the steps of: providing a layer of a synthetic bioabsorbable material; providing a dispersion of collagen in an oil-in-water emulsion; coating at least one face of the layer of synthetic bioabsorbable material with the said dispersion; and drying the composite material thus obtained.
摘要:
A method of disinfecting or sterilizing tissues of the oral cavity or a wound or lesion in the oral cavity is provided. The method comprises applying a photosensitizing compound to said tissues, wound or lesion and irradiating said tissues, wound or lesion with laser light at a wavelength absorbed by said photosensitizing compound.
摘要:
The invention provides oxidized alginates that are bioresorbable. The oxidized alginates are prepared by controlled oxidation of alginates with nitrogen tetroxide or the like, The invention also provides pharmaceutical compositions, wound dressings, surgical implants and prostheses comprising the oxidized alginate derivatives.
摘要:
To combat the accumulation of plaque on dentures, a non self-supporting coating of a non-toxic, negatively charged polysaccharide is applied. The polysaccharide coating is gradually sacrificed or ablated during wear. Ablation appears to remove microorganisms along with coating material. The polysaccharide is further defined by an ability to reduce the adhesion of Streptococcus salivarius cells in a simple in vitro bacterial adhesion test by at least 25% over a control.
摘要:
A fully absorbable prosthesis (1) for the repair of damaged ligaments and/or tendons in the form of a multilayer spiral roll comprising the following spiral layers: a foraminous layer (2) of a synthetic bioabsorbable material; a bioabsorbable film (3); and a layer (4) of a bioabsorbable biopolymer sponge. The invention also provides a method of making such a prosthesis, comprising the steps of: providing a laminate of a foraminous layer of bioabsorbable material and a bioabsorbable film; coating the laminate with a layer of an aqueous gel comprising a bioabsorbable polymer; rolling up the laminate and the gel layer into a spiral roll, followed by drying the gel to form a layer of bioabsorbable sponge. The foraminous layer (2) preferably comprises a synthetic bioabsorbable polymer having high tensile strength. The bioabsorbable film (3) and sponge layer (4) preferably comprise a chemotactic biopolymer such as collagen.