摘要:
Provided is a biosensor which can detect a specific biomaterial by an interaction between target molecules and probe molecules, and a manufacturing method thereof. The biosensor includes: a first conductive semiconductor substrate; a second conductive doping layer formed on the semiconductor substrate; an electrode formed on top of both opposite ends of the doping layer; and probe molecules immobilized on the doping layer.
摘要:
Provided are gas storage medium, a gas storage apparatus having the same and a method thereof. The gas storage medium includes a plurality of material layers each having a variable valence, wherein each of the material layers includes redundant electrons that are not participated in chemical bonding.
摘要:
Provided are gas storage medium, a gas storage apparatus having the same and a method thereof. The gas storage medium includes a plurality of material layers each having a variable valence, wherein each of the material layers includes redundant electrons that are not participated in chemical bonding.
摘要:
Provided are an apparatus and method for detecting biomolecules. The apparatus includes a FET having a substrate, a source electrode, a drain electrode, a channel region between the source and drain electrodes, and probe molecules fixed to the channel region, wherein the source and drain electrodes are separated on the substrate, a microfluid supplier selectively supplying one of a reference buffer solution of low ionic concentration and a reaction solution of high ionic concentration containing target molecules, to the channel region of the FET to which the probe molecules are fixed, and a biomolecule detector detecting the target molecules by measuring a first current value of the channel region of the FET, and a second current value of the channel region of the FET to which the target molecules and the probe molecules that bind to each other in the reaction solution of high ionic concentration are fixed.
摘要:
Provided are an apparatus and method for detecting biomolecules. The apparatus includes a FET having a substrate, a source electrode, a drain electrode, a channel region between the source and drain electrodes, and probe molecules fixed to the channel region, wherein the source and drain electrodes are separated on the substrate, a microfluid supplier selectively supplying one of a reference buffer solution of low ionic concentration and a reaction solution of high ionic concentration containing target molecules, to the channel region of the FET to which the probe molecules are fixed, and a biomolecule detector detecting the target molecules by measuring a first current value of the channel region of the FET, and a second current value of the channel region of the FET to which the target molecules and the probe molecules that bind to each other in the reaction solution of high ionic concentration are fixed.
摘要:
Provided are a substrate for analyzing the coverage of self-assembled molecules and a method for analyzing the coverage of the self-assembled molecules in nanowire and nanochannel patterned on solid surface, solid surface, or bulk solid surface by using the nanoparticles. According to the method, the presence of specific functional groups of self-assembled molecules and the degree of reaction can be analyzed by introducing nanoparticles to a biomaterial immobilization substrate including self-assembled molecules and measuring the number of gold nanoparticles existing on the surface. The substrate for analyzing the coverage of self-assembled molecules includes: a biomaterial immobilization substrate; a self-assembled molecular layer formed on the substrate and having a functional group capable of reacting with an amine group; a capture DNA molecule having an amine group bounded to the self-assembled molecular layer; and a probe DNA molecule bound to the capture DNA molecule and having nanoparticles attached to on the surface.
摘要:
Provided are a method of manufacturing a semiconductor nanowire sensor device and a semiconductor nanowire sensor device manufactured according to the method. The method includes preparing a first conductive type single crystal semiconductor substrate, forming a line-shaped first conductive type single crystal pattern from the first conductive type single crystal semiconductor substrate, forming second conductive type epitaxial patterns on both sidewalls of the first conductive type single crystal pattern, and forming source and drain electrodes at both ends of the second conductive type epitaxial patterns.
摘要:
Provided is a method for selectively functionalizing unmodified solid surface, not oxidized and nitrified, into an aldehyde group, and a method for immobilizing an active material such as bio material or functional material on the functionalized aldehyde solid surface through strong and stable chemical bonding. Differently from a conventional method immobilizing deoxyribonucleic acid (DNA) using a cross linker, the method of the present invention does not require a cross linker reaction step to thereby shorten a process. Also, since a cross linker is absent, the monomolecular layer on the surface of a device is thin, which reduces a perturbation effect by molecular layer. This is useful in fabrication of molecular electronic devices and bio-active devices. In addition, since the bio material or functional material is selectively immobilized only on the unmodified surface, the present invention can functionalize only a specific solid surface and develop a highly sensitive sensor and an improved functional device.
摘要:
Provided is a biosensor with a three-dimensional multi-layered structure, a method for manufacturing the biosensor, and a biosensing apparatus including the biosensor. The biosensing apparatus includes: a chamber having an inlet through which a fluid containing a biomaterial enters and an outlet through which the fluid exits; and a plurality of biosensors inserted and fixed in the chamber. Each biosensor includes: a support unit having a fluid channel through which a fluid containing a biomaterial flows; and a sensing unit disposed on the support unit in such a way that the sensing unit is exposed three-dimensionally in the fluid channel of the support unit, the sensing unit being surface-treated with a reactive material that is to react with the biomaterial flowing through the fluid channel.
摘要:
There are provided a nanowire filter, a method for manufacturing the same, a filtering apparatus having the same, and a method for removing material adsorbed on the nanowire filter. The filtering apparatus includes: a filter having a supporting member and a plurality of nanowires supported on the supporting member and arranged in a crystallized state; and a body into which the filter is inserted and secured, and which has an inlet for guiding an introduced fluid to the filter and an outlet for discharging the fluid filtered through the filter to the outside.