摘要:
An apparatus and related method for providing a substantially flat working surface of photocurable resin for the formation of a next layer of a stereolithographic part. A substantially flat surface of a rigid member is substantially covered by and spaced from the resin by a substance or film, which is placed in contact with the photocurable resin to form the working surface. Various embodiments are described including where the rigid member is a quartz including a fused silica plate, a bar, a vat wall, the face of a CRT, a fiber-optic bundle, or the bottom of a piston, and also including embodiments where the substance or film is a thin teflon or mylar film, an inert liquid, wax, a thin coating of trichlorosilane or ethoxysilane, or oxygen-saturated resin. Embodiments are also described whereby the next layer is exposed by transmitting solidifying radiation through the member and substance or film.
摘要:
Improved apparatus and methods for forming a layer of material over a surface of a previously-formed cross-section of a three-dimensional object in anticipation of forming a next cross-section of the object out of the layer. A volume of material, including at least some excess material, is placed over the surface, and the excess material is swept off by placing the excess material in the predetermined path of a sweeping member, the path being substantially in a plane spaced from a working surface of material. The member may be directed to sweep the excess material away through a successive number of sweeps, which may vary for each cross-section, at least a velocity which may vary for each sweep. Additionally, the clearance between the member and the surface of the previous cross-section may vary for each sweep. A "winged" member is also provided, comprising two legs extending from a base, and a "Trident" embodiment is also provided, comprising three legs extending from a base.
摘要:
Apparatus and method for stereolithographically forming a three-dimensional object includes a vessel for holding a building material and a smoothing member for forming a uniform coating over a previously formed layer of the object. The smoothing member has a plurality of blades. The smoothing member is swept over a previously formed layer of the object, in at least two directions. Different clearances between the lower surface of the smoothing member and the upper surface of the previously formed layer are used to provide a uniform coating for a subsequent layer over the previously formed layer. The sweeping velocity of the smoothing member can be varied. Retractable needles are attached to the smoothing member for adjusting a blade gap between a lower surface of the smoothing member and the surface of the building material.
摘要:
Improved apparatus and methods for forming a layer of material over a surface of a previously-formed cross-section of a three-dimensional object in anticipation of forming a next cross-section of the object out of the layer. A volume of material, including at least some excess material, is placed over the surface, and the excess material is swept off by placing the excess material in the predetermined path of a sweeping member, the path being substantially in a plane spaced from a working surface of material. The member may be directed to sweep the excess material away through a successive number of sweeps, which may vary for each cross-section, at least a velocity which may vary for each sweep. Additionally, the clearance between the member and the surface of the previous cross-section may vary for each sweep. A "winged" member is also provided, comprising two legs extending from a base, and a "Trident" embodiment is also provided, comprising three legs extending from a base.
摘要:
Improved apparatus and methods for forming a layer of material over a surface of a previously-formed cross-section of a three-dimensional object in anticipation of forming a next cross-section of the object out of the layer. A volume of material, including at least some excess material, is placed over the surface, and the excess material is swept off by placing the excess material in the predetermined path of a sweeping member, the path being substantially in a plane spaced from a working surface of material. The member may be directed to sweep the excess material away through a successive number of sweeps, which may vary for each cross-section, at least a velocity which may vary for each sweep. Additionally, the clearance between the member and the surface of the previous cross-section may vary for each sweep. A "winged" member is also provided, comprising two legs extending from a base, and a "Trident" embodiment is also provided, comprising three legs extending from a base.
摘要:
Some embodiments of the present invention provide processes and apparatus for electrochemically fabricating multilayer structures (e.g. mesoscale or microscale structures) with improved endpoint detection and parallelism maintenance for materials (e.g. layers) that are planarized during the electrochemical fabrication process. Some methods involve the use of a fixture during planarization that ensures that planarized planes of material are parallel to other deposited planes within a given tolerance. Some methods involve the use of an endpoint detection fixture that ensures precise heights of deposited materials relative to an initial surface of a substrate, relative to a first deposited layer, or relative to some other layer formed during the fabrication process. In some embodiments planarization may occur via lapping while other embodiments may use a diamond fly cutting machine.
摘要:
An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
摘要:
Embodiments are directed to methods for forming multi-layer three-dimensional structures involving the joining of at least two structural elements, at least one of which is formed as a multi-layer three-dimensional structure, wherein the joining occurs via one of: (1) elastic deformation and elastic recovery and subsequent retention of elements relative to each other, (2) relative deformation of an initial portion of at least one element relative to another portion of the at least one element until the at least two elements are in a desired retention position after which the deformation is reduced or eliminated and a portion of at least one element is brought into position which in turn locks the at least two elements together via contact with one another including contact with the initial portion of at least one element, or (3) moving a retention region of one element into the retention region of the other element, without deformation of either element, along a path including a loading region of the other element and wherein during normal use the first and second elements are configured relative to one another so that the loading region of the second elements is not accessible to the retention region of the first element.
摘要:
An embodiment of the invention includes a method for acquiring a plurality of tissue samples. The method includes using a device to cut a first tissue sample from an internal tissue tract of a patient and storing the first tissue sample in a container. Without removing the device from the patient, the method further includes using the device to cut a second tissue sample from the internal tissue tract and storing the tissues ample in the container. The method also includes coupling a fluid delivery device to the container to flush the first and second tissue samples from the container.
摘要:
Embodiments of multi-layer three-dimensional structures and formation methods provide structures with effective feature (e.g. opening) sizes (e.g. virtual gaps) that are smaller than a minimum feature size (MFS) that exists on each layer as a result of the formation method used in forming the structures. In some embodiments, multi-layer structures include a first element (e.g. first patterned layer with a gap) and a second element (e.g. second patterned layer with a gap) positioned adjacent the first element to define a third element (e.g. a net gap or opening resulting from the combined gaps of the first and second elements) where the first and second elements have features that are sized at least as large as the minimum feature size and the third element, at least in part, has dimensions or defines dimensions smaller than the minimum feature size.