摘要:
A light emitting diode (LED) includes a substrate, a buffer layer and an epitaxial structure. The substrate has a first surface with a patterning structure formed thereon. The patterning structure includes a plurality of projections. The buffer layer is arranged on the first surface of the substrate. The epitaxial structure is arranged on the buffer layer. The epitaxial structure includes a first semiconductor layer, an active layer and a second semiconductor layer arranged on the buffer layer in sequence. The first semiconductor layer has a second surface attached to the active layer. A distance between a peak of each the projections and the second surface of the first semiconductor layer is ranged from 0.5 μm to 2.5 μm.
摘要:
An LED comprises a substrate, a buffer layer, an epitaxial layer and a conductive layer. The epitaxial layer comprises a first N-type epitaxial layer, a second N-type epitaxial layer, and a blocking layer with patterned grooves sandwiched between the first and second N-type epitaxial layers. The first and second N-type epitaxial layers make contact each other via the patterned grooves. Therefore, the LED enjoys a uniform current distribution and a larger light emitting area. A manufacturing method for the LED is also provided.
摘要:
A light emitting diode includes a substrate, a transitional layer on the substrate and an epitaxial layer on the transitional layer. The transitional layer includes a planar area with a flat top surface and a patterned area with a rugged top surface. An AlN material includes a first part consisting of a plurality of spheres and a second part consisting of a plurality of slugs. The spheres are on a top surface of the transitional layer, both at the planar area and the patterned area. The slugs are in grooves defined in the patterned area. Air gaps are formed between the slugs and a bottom surface of the epitaxial layer. The spheres and slugs of the AlN material help reflection of light generated by the epitaxial layer to a light output surface of the LED.
摘要:
A light emitting diode (LED) comprises a substrate, an epitaxial layer and an aluminum nitride (AlN) layer sequentially disposed on the substrate. The AlN layer comprises a plurality of stacks separated from each other, wherein the epitaxial layer entirely covers the plurality of stacks of the AlN layer. The AlN layer with a plurality of stacks reflects upwardly light generated by the epitaxial layer and downwardly toward the substrate to an outside of LED through a top plan of the LED. A method for forming the LED is also disclosed.
摘要:
A method for fabricating a semiconductor lighting chip includes steps of: providing a substrate with a first block layer dividing an upper surface of the substrate into a plurality of epitaxial regions; forming a first semiconductor layer on the epitaxial regions; forming a second block layer partly covering the first semiconductor layer; forming a lighting structure on an uncovered portion of the first semiconductor layer; removing the first and the second block layers thereby defining clearances at the bottom surfaces of the first semiconductor layer and the lighting structure; and permeating etching solution into the first and second clearances to etch the first semiconductor layer and the lighting structure, thereby to form each of the first semiconductor layer and the lighting structure with an inverted frustum-shaped structure.
摘要:
A semiconductor structure includes a Si substrate, a supporting layer and a blocking layer formed on the substrate and an epitaxy layer formed on the supporting layer. The supporting layer defines a plurality of grooves therein to receive the blocking layer. The epitaxy layer is grown from the supporting layer. A plurality of slots is defined in the epitaxy layer and over the blocking layer. The epitaxy layer includes an N-type semiconductor layer, a light-emitting layer and a P-type semiconductor layer. A method for manufacturing the semiconductor structure is also disclosed.
摘要:
An LED chip includes a substrate, a first type semiconductor layer, a light-emitting layer, a second type semiconductor layer, a first electrode and a second electrode formed on the substrate in sequence. A surface of the first type semiconductor layer away from the substrate comprises an exposed first area and a second area covered by the light-emitting layer. The first electrode is formed on the exposed first area of the substrate. A number of recesses are defined in the second area of the surface of the first type semiconductor layer. The recesses are spaced apart from each other and arranged in sequence in a direction away from the first electrode; depths of the recesses gradually decrease following an increase of a distance between the recesses and the first electrode. The second electrode is formed on the second type semiconductor layer.
摘要:
A light emitting element includes a substrate, a GaN layer formed on the substrate, a first low refractive index semiconductor layer formed on the GaN layer, and a lighting structure having a high refractive index formed on the first low refractive index semiconductor layer. A second low refractive index semiconductor layer is embedded in the first low refractive index semiconductor layer. The first low refractive index semiconductor layer and the GaN layer exhibit a lattice mismatch therebetween.
摘要:
A gallium nitride-based semiconductor device includes a composite substrate and a gallium nitride layer. The composite substrate includes a silicon substrate and a filler. The silicon substrate includes a first surface and a second surface opposite to the first surface, and the first surface defines a number of grooves therein. The filler is filled into the number of grooves on the first surface of the silicon substrate. A thermal expansion coefficient of the filler is bigger than that of the silicon substrate. The gallium nitride layer is formed on the second surface of the silicon substrate.
摘要:
A method for manufacturing light emitting chips includes steps of: providing a substrate having a plurality of separate epitaxy islands thereon, wherein the epitaxy islands are spaced from each other by channels; filling the channels with an insulation material; sequentially forming a reflective layer, a transition layer and a base on the insulation material and the epitaxy islands; removing the substrate and the insulation material to expose the channels; and cutting the reflective layer, the transition layer and the base to form a plurality of individual chips along the channels.