摘要:
The present invention discloses a unitized charging and discharging battery management system and a programmable battery management module thereof The unitized charging and discharging battery management system includes a smart battery module and a programmable battery management module, which has a universal loop and a control unit. The smart battery module has at least two smart batteries which are electrically connected by a plurality of switches and circuits of the universal loop to form a charging/discharging loop in series/parallel. The control unit monitors the charging and discharging status of the smart batteries to turn on or off the switches accordingly, so as to manage the smart batteries, thereby enhancing the overall power efficacy of the smart battery module. Besides, the service life of the smart battery module is also prolonged due to the simultaneous charging and discharging capability.
摘要:
A three-dimensional SoC structure formed by stacking multiple chip modules is provided. The three-dimensional SoC structure includes at least two vertical SoC modules and at least one connector module, wherein each connector module electrically connects two vertical SoC modules. Each vertical SoC module is constructed by stacking at least two chip modules vertically. Each chip module includes a module circuit board and at least one preset element. A recess is formed in each module circuit board and provided with a first connecting interface for electrically connecting with the corresponding at least one preset element. The at least two vertical SoC modules are connected by the connector module to form a three-dimensional SoC structure with multiple functions. Besides, the recesses formed in the module circuit boards provide effective heat dissipation paths for the preset elements.
摘要:
A programmable frequency divider with a full dividing range includes a plurality of cascaded 2/1 frequency dividers. Each of the 2/1 frequency dividers has a first input node, a first output node, a second input node, a second output node and a third input node. The first input node receives a first clock signal divided by the 2/1 frequency divider and outputted as a second clock signal through the first output node. A second logical signal is generated according to the second clock signal, the first clock signal and a first logical signal received from the second input node. The 2/1 frequency divider selectively switches to perform a divide-by-two or divide-by-one operation according to the second logical signal and a first divisor signal received from the third input nodes. The programmable frequency divider provides the full dividing range as the result of utilizing various divisor of the 2/1 frequency divider.
摘要:
A multi-layer system-on-chip (SoC) module structure is provided. The multi-layer SoC module structure includes at least two circuit board module layers and at least one connector module layer. Each connector module layer is sandwiched between and thus electrically connects two circuit board module layers such that the SoC module structure is formed by stacking. Each circuit board module layer is composed of at least one circuit board module while each connector module layer is composed of at least one connector module. Hence, the SoC module structure can be manufactured as a three-dimensional structure, thus allowing highly flexible connections within the SoC module structure.
摘要:
A multi-layer system-on-chip (SoC) module structure is provided. The multi-layer SoC module structure includes at least two circuit board module layers and at least one connector module layer. Each connector module layer is sandwiched between and thus electrically connects two circuit board module layers such that the SoC module structure is formed by stacking. Each circuit board module layer is composed of at least one circuit board module while each connector module layer is composed of at least one connector module. Hence, the SoC module structure can be manufactured as a three-dimensional structure, thus allowing highly flexible connections within the SoC module structure.
摘要:
An edge-missing detector structure includes a first detector, a first delay unit, a first logic gate, a second detector, a second delay unit, and a second logic gate. After being input separately into the edge-missing detector structure, a first reference signal and a first clock signal are detected by the first and second detectors and then subjected to cycle suppression by the first and second logic gates, respectively, so as to generate a second reference signal and a second clock signal which present a phase difference less than 2π. Moreover, the edge-missing detector structure generates a compensative current corresponding to the number of occurrences of cycle suppression. Thus, a phase-locked loop (PLL) using the edge-missing detector structure can avoid cycle slip problems and achieve fast acquisition of phase lock.
摘要:
An edge-missing detector structure includes a first detector, a first delay unit, a first logic gate, a second detector, a second delay unit, and a second logic gate. After being input separately into the edge-missing detector structure, a first reference signal and a first clock signal are detected by the first and second detectors and then subjected to cycle suppression by the first and second logic gates, respectively, so as to generate a second reference signal and a second clock signal which present a phase difference less than 2π. Moreover, the edge-missing detector structure generates a compensative current corresponding to the number of occurrences of cycle suppression. Thus, a phase-locked loop (PLL) using the edge-missing detector structure can avoid cycle slip problems and achieve fast acquisition of phase lock.
摘要:
A three-dimensional SoC structure formed by stacking multiple chip modules is provided. The three-dimensional SoC structure includes at least two vertical SoC modules and at least one connector module, wherein each connector module electrically connects two vertical SoC modules. Each vertical SoC module is constructed by stacking at least two chip modules vertically. Each chip module includes a module circuit board and at least one preset element. A recess is formed in each module circuit board and provided with a first connecting interface for electrically connecting with the corresponding at least one preset element. The at least two vertical SoC modules are connected by the connector module to form a three-dimensional SoC structure with multiple functions. Besides, the recesses formed in the module circuit boards provide effective heat dissipation paths for the preset elements.
摘要:
A fabrication method for a system-on-chip (SoC) module is provided. The fabrication method includes the steps of providing at least two SoC sub-modules and connecting the SoC sub-modules. The SoC sub-modules are electrically connected with each other by connection interfaces of the SoC sub-modules so as to form the SoC module. As the SoC sub-modules have been verified in advance, the time required for verifying the resulting SoC module can be significantly reduced. As for application-specific SoC modules, they are fabricated by connecting with application-specific SoC sub-modules via the appropriate connection interfaces. Thus, the time and costs for developing SoC modules can both be minimized.
摘要:
The present invention discloses a carrier structure of a System-on-Chip (SoC) with a custom interface. The carrier structure includes a substrate, at least one common die, at least one custom interface and a molding compound. The common die and the custom interface are disposed on the substrate. The molding compound is used to package the common die which electrically connects to the substrate and the custom interface respectively. The carrier structure which includes the common die can form a complete SoC by connecting to an expansive die through the custom interface. The carrier structure with the common die which can be tested and certified in advance allows reducing and simplifying the developing procedures of the SoC.