摘要:
A semiconductor device (10) is formed having an SRAM array with a plurality of SRAM cells. In forming the access and latch transistors, two different gate electrode compositions are used to form the access and latch transistors. More specifically, a dielectric layer (22) is formed between two conductive layers (26 and 28) within the gate electrode (52) for the access transistors while the dielectric layer is not formed between the two conductive layers (26 and 28) for the latch transistors. This structure allows an increase in the beta ratio for the SRAM cell thereby making a more stable SRAM cell without having to use diffused resistors between the access transistors in storage nodes or by having to form a differential thickness between the gate dielectric layers for the latch transistors and the access transistors.
摘要:
A method for processing a conductive layer, such as a doped polysilicon layer (14) of a gate stack, provides a degas step after precleaning to reduce particle count and defectivity. The conductive layer is provided on a substrate (10), e.g., a silicon wafer. The substrate (10) and conductive layer are subjected to an elevated temperature, under a vacuum, whereby certain species are liberated. The substrate having the conductive layer formed thereon is then removed from the chamber, and moved to a second, separate chamber, in which a second conductive layer (20) is deposited. By switching chambers, the liberated species are largely prevented from contributing to particle count at the interface between the conductive layers. Alternatively, the second conductive layer is formed in the same chamber, provided that the liberated species are removed from the chamber prior to deposition of the second conductive layer.
摘要:
A semiconductor process and apparatus includes forming a semiconductor device by depositing a layer of nitride (20) over a semiconductor structure (10), patterning and etching the nitride layer to form a patterned nitride layer (42, 44), depositing a layer of polysilicon (62), planarizing the polysilicon layer with a CMP process to remove any portion of the polysilicon layer (62) above the patterned dielectric layer (42, 44), and then removing the patterned nitride layer (42, 44), thereby defining one or more polysilicon features (72, 74, 76) that can be used as floating gates, transistors gates, bit lines or any other semiconductor device feature.
摘要:
A semiconductor fabrication process for forming a gate dielectric includes depositing a high-k dielectric stack including incorporating nitrogen into the high-k dielectric stack in-situ. A top high-k dielectric is formed overlying the dielectric stack and the dielectric stack and the top dielectric are annealed. Depositing the dielectric stack may include depositing a plurality of high-k dielectric layers where each layer is formed in a distinct processing step or set of steps. Depositing one of the dielectric layers may include performing a plurality of atomic layer deposition processes to form a plurality of high-k sublayers, wherein each sublayer is a monolayer film. Depositing the plurality of sublayers may include depositing a nitrogen free sublayer and depositing a nitrogen bearing sublayer. Depositing the nitrogen free sublayer may include pulsing an ALD chamber with HfCl4, purging the chamber with an inert, pulsing the chamber with an H2O or D2O, and purging the chamber with an inert.
摘要:
A semiconductor fabrication process includes patterning a hard mask over a semiconductor substrate to expose an isolation region and forming a trench in the isolation region. A flowable dielectric is deposited in the trench to partially fill the trench and a capping dielectric is deposited overlying the first oxide to fill the trench. The substrate may be a silicon on insulator (SOI) substrate including a buried oxide (BOX) layer and the trench may extend partially into the BOX layer. The flowable dielectric may be a spin deposited flowable oxide or a CVD BPSG oxide. The flowable dielectric isolation structure provides a buffer that prevents stress induced on one side of the isolation structure from creating stress on the other side of the structure. Thus, for example, compressive stress created by forming silicon germanium on silicon in PMOS regions does not create compressive stress in NMOS regions.
摘要:
A semiconductor fabrication annealing process includes depositing a high dielectric constant gate dielectric over a substrate and annealing the gate dielectric. Annealing the gate dielectric includes exposing the gate dielectric to an inert ambient and ramping the inert ambient to an annealing temperature. A passivating gas is then introduced into the ambient while maintaining the ambient at the annealing temperature. This passivating ambient is then maintained at the annealing temperature for a specified duration. While maintaining the presence of the passivating gas in the ambient, the ambient temperature is then ramped down from the annealing temperature to a second temperature, which is preferably less than 100° C. The passivating gas is preferably hydrogen gas, deuterium gas, or a combination of the two. The annealing temperature is preferably greater than approximately 470° C.
摘要:
A method for treating a semiconductor surface to form a metal-containing layer includes providing a semiconductor substrate having an exposed surface. The exposed surface of the semiconductor substrate is treated by forming one or more metals overlying the semiconductor substrate but not completely covering the exposed surface of the semiconductor substrate. The one or more metals enhance nucleation for subsequent material growth. A metal-containing layer is formed on the exposed surface of the semiconductor substrate that has been treated. The treatment of the exposed surface of the semiconductor substrate assists the metal-containing layer to coalesce. In one embodiment, treatment of the exposed surface to enhance nucleation may be performed by spin-coating, atomic layer deposition (ALD), physical layer deposition (PVD), electroplating, or electroless plating. The one or more metals used to treat the exposed surface may include any rare earth or transition metal, such as, for example, hafnium, lanthanum, etc.
摘要:
Semiconductor devices and conductive structures can be formed having a metallic layer. In one embodiment, a semiconductor device includes an amorphous metallic layer (22) and a crystalline metallic layer (42). The amorphous metallic layer (22) helps to reduce the likelihood of penetration of contaminants through the amorphous metallic layer (22). A more conductive crystalline metallic layer (42) can be formed on the amorphous metallic layer (22) to help keep resistivity relatively low. When forming a conductive structure, a metal-containing gas and a scavenger gas flow simultaneously during at least one point in time. The conductive structure may be part of a gate electrode.
摘要:
A semiconductor device (10) includes a gate electrode (61) having a silicon/tungsten nitride/tungsten silicon nitride/tungsten silicide composition. The tungsten nitride film (21) and tungsten suicide film (23) are formed using chemical vapor deposition (CVD). The tungsten nitride film is formed using a tungsten halide and N.sub.2 R.sup.1 R.sup.2, where each of R.sup.1 and R.sup.2 is hydrogen, an alkyl group, an alkenyl group, or an alkynyl group. The tungsten nitride film (21) is an etch stop when patterning the tungsten silicide film (23). The CVD tungsten nitride film (21) helps to improve gate dielectric integrity and reduces interface traps when compared to a sputtered tungsten nitride film (21). Also, N.sub.2 R.sup.1 R.sup.2 can be used to remove halogens that are adsorbed onto walls of a reaction chamber than is cleaned between depositions of substrates.
摘要翻译:半导体器件(10)包括具有硅/氮化钨/氮化钨/硅化钨组合物的栅电极(61)。 使用化学气相沉积(CVD)形成氮化钨膜(21)和硅化钨膜(23)。 氮化钨膜使用卤化钨和N 2 R 1 R 2形成,其中R 1和R 2各自为氢,烷基,烯基或炔基。 当图案化硅化钨膜(23)时,氮化钨膜(21)是蚀刻停止层。 与溅射的氮化钨膜(21)相比,CVD氮化钨膜(21)有助于提高栅极电介质完整性并减少界面陷阱。 此外,N2R1R2可用于除去吸附到反应室壁上的卤素,而不是在底物沉积之间清洗的卤素。
摘要:
A metal layer etch process deposits, patterns and anisotropically etches a polysilicon layer (24) down to an underlying metal layer (22) to form an etched polysilicon structure (54) with polymer layers (50, 52) formed on its sidewall surfaces. The polymer layer (50, 52) are removed to expose an additional surface area (60, 62) of the metal layer (22), and dielectric layers (80, 82) are formed on the sidewall surfaces of the etched polysilicon structure (54). Next, the metal layer (22) is plasma etched to form an etched metal layer (95) with substantially vertical sidewall surfaces (97, 99) by simultaneously charging the dielectric layers (80, 82) to change plasma ion trajectories near the dielectric layers (80, 82) so that plasma ions (92, 94) impact the sidewall surfaces (97, 99) in a more perpendicular angle to enhance etching of the sidewall surfaces (97, 99) of the etched metal layer (95).