摘要:
A manufacturing method, and an integrated circuit resulting therefrom, has a substrate and a semiconductor device thereon. A stop layer over the substrate has a first dielectric layer formed thereon having an opening into which a first conformal barrier is formed. A first conformal barrier liner is formed in the opening, processed, and treated to improve adhesion. Portions of the first conformal barrier liner on the sidewalls act as a barrier to diffusion of conductor core material to the first dielectric layer. A conductor material is formed in the opening over the vertical portions of the first conformal barrier liner and the first stop layer.
摘要:
Low-k ILDs are protected from degradation during damascene processing by depositing a thin, conformal silicon carbide liner with a silicon-rich surface before barrier metal layer deposition. Embodiments include forming a dual damascene opening in porous low-k dielectric layers, depositing a thin silicon carbide liner with a silicon-rich surface lining the opening, depositing a barrier metal layer, such as a Ta/TaN composite, and filling the opening with Cu.
摘要:
An integrated circuit having a substrate and a semiconductor device thereon. A stop layer over the substrate has a first dielectric layer formed thereon having an opening into which a first conformal barrier is formed. A first conformal barrier liner is formed in the opening, processed, and treated to improve adhesion. Portions of the first conformal barrier liner on the sidewalls act as a barrier to diffusion of conductor core material to the first dielectric layer. A conductor material is formed in the opening over the vertical portions of the first conformal barrier liner and the first stop layer.
摘要:
Low-k ILDs are protected from degradation during damascene processing by depositing a thin, conformal silicon carbide liner with a silicon-rich surface before barrier metal layer deposition. Embodiments include forming a dual damascene opening in porous low-k dielectric layers, depositing a thin silicon carbide liner with a silicon-rich surface lining the opening, depositing a barrier metal layer, such as a Ta/TaN composite, and filling the opening with Cu.
摘要:
Improved etch selectivity, barrier metal wetting and reduced interconnect capacitance are achieved by implementing damascene processing employing a graded middle etch stop layer comprising a first silicon carbide layer, a silicon-rich layer on the first silicon carbide, and a second silicon carbide layer on the silicon-rich layer. Embodiments include sequentially depositing a porous low-k dielectric layer over a lower capped Cu line, depositing the graded middle-etch stop layer, depositing a porous low-k dielectric layer on the graded middle-etch stop layer, forming a dual damascene opening exposing the silicon-rich surface at the bottom of the trench opening, depositing a seed layer, depositing a barrier middle layer, such as Ta or a Ta/TaN composite, and filling the opening with Cu.
摘要:
A multiple-layer interconnect structure in an integrated circuit, is formed using damascene techniques. A first layer interconnect has a first dielectric layer through which at least one first layer conductor extends. A second layer interconnect is then formed on the first layer interconnect. The second layer interconnect also includes a second layer dielectric through which at least one second layer conductor extends. However, the second layer interconnect is created by first forming a thick second later dielectric layer and then reducing the thickness of the second layer dielectric prior to a patterning step. As a result topographical irregularities that may have carried over to the second layer interconnect from the first layer interconnect are removed by providing a substantially planar surface on the second layer dielectric.
摘要:
Electromigration and stress migration of Cu interconnects are significantly reduced by forming a composite capping layer comprising a layer of tantalum nitride on the upper surface of the inlaid Cu and a layer of α-Ta on the titanium nitride layer. Embodiments include forming a recess in an upper surface of an upper surface of Cu inlaid in a dielectric layer, depositing a layer of titanium nitride of a thickness of 20 Å to 100 Å and then depositing a layer of α-Ta at a thickness of 200 Å to 500 Å.
摘要:
An improved tungsten plug/Local Interconnect slurry for Chemical Mechanical Polishing which does not require inclusion of a chemical stabilizer. The slurry is made using a combination of two separate batch mixings of stable ingredients and Point-of Use mixing of portions of the two batches, whereby the oxidizers are combined with the coated abrasive mixture immediately prior to dispensing the slurry onto the polishing pad by combining selected flows from each of the two batches to form a total flow rate equal to the required rate of slurry flow onto the polishing pad.
摘要:
A polishing slurry composition and its method of making for planarization of silicon semiconductor wafers by chemical mechanical polishing of the wafer. A slurry formulation utilizing a ferric salt tungsten oxidizer, an ammonium persulfate titanium oxidizer, a fatty acid suspension agent, alumina particles with a small diameter and tight diameter range, coated with a solubility coating, and a chemical stabilizer, provides high tungsten and titanium polish rates with high selectivity to silicon dioxide, and good oxide defectivity for use in tungsten local interconnect applications. A method for making a tungsten slurry includes first thoroughly blending small diameter alumina particles with a tight diameter range in an aqueous concentrate with a suspension agent, then mixing with water and oxidizers. Ferric salt tungsten slurries made by this method provide excellent tungsten polish characteristics for via plug and local interconnect applications.
摘要:
An integrated circuit and manufacturing method therefor is provided having a semiconductor substrate with a semiconductor device. A dielectric layer formed over the semiconductor substrate has an opening provided therein. The dielectric layer is of non-barrier dielectric material capable of being changed into a barrier dielectric material. The dielectric layer around the opening is changed into the barrier dielectric material and the conductor core material is deposited to fill the opening. The conductor core is processed to form a channel for the integrated circuit.