摘要:
Useful field effect transistors can be made with gallium indium arsenide as the electron conducting layer (channel layer) by incorporating a layer of gallium arsenide for the Schottky barrier. Relatively thick gallium arsenide layers are used to achieve low reverse leakage currents.
摘要:
Heteroepitaxial growth of phosphorus-containing III/V semiconductor material (e.g., InGaAsP) on a non-planar surface of a different phosphorus-containing III/V semiconductor material (e.g., InP) is facilitated by heating the non-planar surface in a substantially evacuated chamber to a mass-transport temperature, and exposing the surface to a flux of at least phosphorus form a solid phosphorus source. This mass-transport step is followed by in situ growth of the desired semiconductor material, with at least an initial portion of the growth being done at a first growth temperature that is not greater than the mass transport temperature. Growth typically is completed at a second growth temperature higher than the first growth temperature. A significant aspect of the method is provision of the required fluxes (e.g., phosphorus, arsenic, indium, gallium) from solid sources, resulting in hydrogen-free mass transport and growth, which can be carried out at lower temperatures than is customary in the prior art. An exemplary and preferred application of the method is in grating formation and overgrowth in InP-based DFB lasers.
摘要:
Disclosed is a method for manufacturing a vertical cavity, surface-emitting laser. The method includes growing a distributed Bragg reflector having at least 10 layers of alternating composition on a gallium arsenide substrate. The growth surface of the substrate is tilted by an angle of 1.degree.-7.degree. from the orientation of a (100) surface toward the orientation of a (111)A surface. This results in improved reflectivity of the DBR.
摘要:
We have found that transistors have desirable device characteristics when the base region is composed of a lightly doped layer near the emitter junction and a heavily doped layer near the collector junction. The edge of the depletion region at the emitter-base junction is designed to stop in the lightly doped base region.
摘要:
A thin and highly doped Ga.sub.0.47 In.sub.0.53 As layer disposed on a Ga.sub.0.47 In.sub.0.53 As layer increases the barrier height and produces useful device characteristics. For example, the structure may be used as the gate electrode in an InGaAs field effect transistor.
摘要翻译:设置在Ga 0.47 In 0.53As层上的薄且高度掺杂的Ga 0.47 In 0.53 As层增加势垒高度并产生有用的器件特性。 例如,该结构可以用作InGaAs场效应晶体管中的栅电极。
摘要:
A majority carrier photodetector has high sensitivity and fast response times. The photodetector comprises a thin highly doped layer surrounded on either side by two nominally undoped layers which are completely depleted at thermal equilibrium.
摘要:
Articles according to the invention include a semiconductor waveguide having a core and a cladding, with the cladding including doped semiconductor material. The doping level is selected such that both the real part n and the imaginary part k of the complex refractive index of the doped material are relatively low, exemplarily n
摘要:
This invention embodies an integrated optical package including an optical component having an asymmetric modal output, and a lens integrated with the component for coupling to another optical component having a large modal area. The coupling is achieved by the use of a Polymeric Elongated Waveguide Emulating (PEWE) lens. In the exemplary embodiment the first optical component is a modulator, and the other optical component is an optical fiber. A facet of the modulator is etched by reactive ion etching (RIE) which allows integration of the PEWE lens on a common substrate. The lens is manufactured using a polymer film on a dielectric cladding layer. The fabrication relies on the remelt and reflow properties of polymer films to provide a smooth adiabatic mode contraction from a circular (optical fiber) mode (.apprxeq.6 .mu.m in diameter) to a semiconductor mode (.apprxeq.1 .mu.m) over a length of 250 .mu.m. The PEWE lens permits coupling with an insertion loss of 0.5 dB and 80 percent coupling efficiency, even though the lens is butt-coupled to a fiber without any external lens. The PEWE lens allows the realization of better than 80 percent direct fiber butt-coupling efficiencies to semiconductor lasers, photodetectors, optical modulators, switches and amplifiers with a simultaneous order of magnitude relaxation of the alignment tolerances typically needed for the coupling of semiconductor devices with single-mode fibers.