Abstract:
A integrated circuit device with a polymer memory array includes active circuits formed in lower layers of a multi-level interconnect structure and a semiconductor substrate and also includes an array of polymer memory cells formed in an upper interconnect level having a plurality of cell node electrodes and source line electrodes for the polymer memory array, each polymer memory cell including a passive layer having at least one conductivity-facilitating compound that is formed on top and sidewall surfaces of a source line electrode, and an active layer having an impedance state that can change that is formed on top and sidewall surfaces of an adjacent cell node electrode with sufficient thickness to make direct physical contact with the passive layer.
Abstract:
A method, system and apparatus for sharing internal power supplies in integrated circuit devices is described. A multiple device integrated circuit 200 including multiple integrated circuits 202-205 each having internal power supplies is contained in an enclosure 201. Integrated circuits 202-205 are described showing how to make external connection to internal power supplies. Connections 208-212 are provided to the internal power supplies of each of devices 202-205. Another embodiment 500 of the system provides for disablement of regulators in multiple integrated circuits 502, 503, and 504 by another integrated circuit 501 for power consumption reduction. The method FIG. 6 includes providing devices and connecting the internal power supplies together. An integrated circuit 501 with a power supply 400 adapted to the system and method with additional circuitry 308, 404 and 402 for disabling a regulator 306 is described.
Abstract:
A semiconductor device has a plurality of stacked semiconductor dice mounted on a substrate. Each die has similar dimensions. Each die has a first plurality of bonding pads arranged along a bonding edge of the die. A first group of the dice are mounted to the substrate with the bonding edge oriented in a first direction. A second group of the dice are mounted to the substrate with the bonding edge oriented in a second direction opposite the first direction. Each die is laterally offset in the second direction relative to the remaining dice by a respective lateral offset distance such that the bonding pads of each die are not disposed between the substrate and any portion of the remaining dice in a direction perpendicular to the substrate. A plurality of bonding wires connects the bonding pads to the substrate. A method of manufacturing a semiconductor device is also disclosed.
Abstract:
A method of snap-shot data training to determine the optimum timing of the DQS enable signal in a single read operation is provided. This is accomplished by first writing a Gray code count sequence into the memory and then reading it back in a single burst. The controller samples the read burst at a fixed interval from the time the command was issued to determine the loop-around delay. A simple truth table lookup determines the optimum DQS enable timing for normal reads. Advantageously, during normal read operations, the first positive edge of the enabled DQS signal is used to sample a counter that is enabled every time a command is issued. If the counter sample changes, indicating timing drift has occurred, the DQS enable signal can be adjusted to compensate for the drift and maintain a position centered in the DQS preamble. This technique can also be applied to a system that uses the iterative approach to determining DQS enable timing on power up. Another embodiment of the invention is a simple, low latency clock domain crossing circuit based on the DQS latched sample of the counter.
Abstract:
In an integrated circuit (IC) adapted for use in a stack of interconnected ICs, interrupted through-silicon-vias (TSVs) are provided in addition to uninterrupted TSVs. The interrupted TSVs provide signal paths other than common parallel paths between the ICs of the stack. This permits IC identification schemes and other functionalities to be implemented using TSVs, without requiring angular rotation of alternate ICs of the stack.