摘要:
A valve actuator assembly for an engine includes a movable poppet valve, and movable first and second spool valves. The assembly also includes an intermediate channel interconnecting the first and second spool valve, a driving channel, and a first and second feedback channel interconnecting the second spool valve and the poppet valve. The valve actuator assembly includes an actuator cooperating with the first spool valve to position the first spool valve to selectively allow high pressure fluid flow to the second spool valve and the driving channel to position the engine valve. The valve actuator assembly further includes a first and second on/off valve in respective fluid communication with the first feedback channel and the second feedback channel to selectively exhaust the first and second feedback channel to control motion of the second spool valve. The second spool valve includes a detent feature operable to maintain the second spool valve in a center biased position.
摘要:
The present invention relates to methods for robust controlled auto-ignition and spark ignited combustion controls in gasoline direct-injection engines, including transients, using either exhaust re-breathing or a combination of exhaust re-compression and re-breathing valve strategy. These methods are capable of enabling engine operation with either lean of stoichiometric or stoichiometric air/fuel ratio for oxides of nitrogen (NOx) control, with varying exhaust gas recirculation (EGR) rates and throttle valve positions for knock control, and with a combination of homogeneous charge compression ignition (HCCI) and spark ignition (SI) combustion modes to optimize fuel economy over a wide range of engine operating conditions.
摘要:
The present invention provides a valve actuation system for an internal combustion engine. The valve actuation system of the present invention may provide an increased range of auto-ignition operation by providing a valve re-opening mechanism to provide products of combustion into the cylinder to increase the thermal efficiency and stability of the auto-ignition combustion process. The present invention allows the poppet valve re-opening timing, lift and duration to be tailored to specific engine architecture and operating conditions. Additionally, the present invention provides a method of re-opening a poppet valve of an internal combustion engine.
摘要:
A direct injection controlled auto-ignition engine is operated at steady state, within a homogeneous charge compression-ignition (HCCI) load range and with fuel-air-diluent mixtures at predetermined conditions, for each speed and load, of engine control inputs, including at least injection timing (FI), spark timing (SI), throttle position, exhaust gas recirculation (EGR) valve setting and exhaust recompression obtained by negative valve overlap (NVO). During engine speed transients, the control inputs are synchronized to changes in the current engine speed, and also with any concurrent changes in the engine fueling rate. Inputs that are inactive during all or part of a speed change have a zero change rate while inactive. The method maintains robust auto-ignition combustion during speed transients with constant or variable fueling rates and with or without load changes.
摘要:
A method is provided for control of transition between combustion modes of a direct-injection engine operable in a homogeneous charge compression ignition (HCCI) mode at lower loads and a spark ignition flame propagation (SI) mode at higher loads. The engine includes a variable valve actuation system including two-step high and low lift valve actuation and separate cam phasing for both intake and exhaust valves. The method includes operating the engine at steady state, with fuel-air-exhaust gas mixtures at predetermined conditions, for each speed and load, and controlling the engine during mode changes between the HCCI mode and the SI mode by switching the exhaust and intake valves between low lift for HCCI operation and high lift for SI operation. High load may be an SI throttled mode with an intermediate unthrottled mode (SI/NTLC} in which transition between HCCI and SI/NTLC modes requires switching only the exhaust valve lift and transition between SI/NTLC and SI throttled modes requires switching only the intake valve lift, with predetermined phase adjustments in the valve timing phasing.
摘要:
A valve actuator assembly for an engine includes a movable poppet valve, and movable first and second spool valves. The assembly also includes an intermediate channel interconnecting the first and second spool valve, a driving channel, and a first and second feedback channel interconnecting the second spool valve and the poppet valve. The valve actuator assembly includes an actuator cooperating with the first spool valve to position the first spool valve to selectively allow high pressure fluid flow to the second spool valve and the driving channel to position the engine valve. The valve actuator assembly further includes a first and second on/off valve in respective fluid communication with the first feedback channel and the second feedback channel to selectively exhaust the first and second feedback channel to control motion of the second spool valve. The second spool valve includes a detent feature operable to maintain the second spool valve in a center biased position.
摘要:
Electro-hydraulic engine valve actuation system providing an actuator and an actuator control system. The actuator includes primary and secondary actuation chambers, defined by a piston, connected to the engine valve, and characterized by increasing and correspondingly decreasing chamber volumes, as the piston is urged away from neutral position. A fluid inlet is connected to a flow control valve. A control valve includes an actuator, and has flow states for controlling flow between two fluid inlets and a fluid outlet. The control valve includes first and second opposed, control chambers, each connected to the actuator. There is a spring in the second control chamber. The actuator of the flow control valve is controlled to a first and second state, and there is an electrically uncontrolled third flow state. There is a pair of temperature-compensated orifices which create internal feedback, with the control chambers, between the engine valve motion and the control valve position.
摘要:
A valve actuator assembly for an engine includes a movable engine valve and a movable spool valve. The valve actuator assembly also includes a driving channel interconnecting the spool valve and the engine valve and a feedback channel interconnecting the spool valve and the engine valve. The valve actuator assembly includes an actuator operatively cooperating with the spool valve to position the spool valve to prevent and allow fluid flow in and out of the driving channel to position the engine valve. The valve actuator assembly further includes an on/off valve in fluid communication with the feedback channel to enable and disable the feedback channel to control motion of the spool valve.
摘要:
A drive piston assembly is provided that is operable to selectively open a poppet valve. The drive piston assembly includes a cartridge defining a generally stepped bore. A drive piston is movable within the generally stepped bore and a boost sleeve is coaxially disposed with respect to the drive piston. A main fluid chamber is at least partially defined by the generally stepped bore, drive piston, and boost sleeve. First and second feedback chambers are at least partially defined by the drive piston and each are disposed at opposite ends of the drive piston. At least one of the drive piston and the boost sleeve is sufficiently configured to move within the generally stepped bore in response to fluid pressure within the main fluid chamber to selectively open the poppet valve. A valve actuator assembly and engine are also provided incorporating the disclosed drive piston assembly.
摘要:
A direct injection controlled auto-ignition engine is operated at steady state, within a homogeneous charge compression-ignition (HCCI) load range and with fuel-air-diluent mixtures at predetermined conditions, for each speed and load, of engine control inputs, including at least fueling mass flow rate, injection timing (FI), spark timing (SI) and exhaust recompression obtained by negative valve overlap (NVO). During load change rates below a predetermined threshold, SI, FI and NVO change rates are synchronized to current changes in the fueling mass flow rate. For fast load increases above the threshold, the cylinder charge is temporarily enriched by increasing the percentage of residual gas or reducing the percentage of fresh air mass in the charge sufficiently to maintain auto-ignition temperature during the load change. This may be done by delaying NVO action for a predetermined speed-dependent number of engine cycles. At very low loads, stable fuel rate reduction may require an alternate method involving deceleration fuel cut-off followed by a step change during refire.