Abstract:
A battery control unit is adapted for a power supply system provided with a storage battery series-connected battery cells, a filter circuit, a discharge circuit, and a connection member connecting between the battery cell and the filter circuit.The battery control unit includes a voltage detection unit detecting voltage at the battery cell where noise is eliminated by the filter circuit, the voltage being detected immediately before/after a discharging is performed through the discharge circuit; a correction value calculation unit that calculates an amount of a voltage drop at the connection member when a discharging is performed through the discharge circuit, to be a correction value; and a voltage calculation unit that calculates voltage of the battery cell by adding the correction value calculated by the correction value calculation unit to a post-discharge voltage detected immediately after the discharging by the voltage detection unit.
Abstract:
A monitoring device includes a monitoring section and a wiring section for electrically connecting the monitoring section and a battery cell. A first and a second electrode terminal groups are reversely arranged. The wiring section includes a first wiring section for electrically connecting the first electrode terminal group and the monitoring section, and a second wiring section for electrically connecting the second electrode terminal group and the monitoring section. The first wiring section has a first substrate and a first wiring pattern, and the second wiring section has a second substrate and a second wiring pattern. The second substrate has a lateral connecting space where a first end side of the second wiring pattern is disposed and a longitudinal connecting space where a second end side of the second wiring pattern is disposed, and the second substrate is bent such that the spaces are opposed to each other.
Abstract:
In a silicon carbide semiconductor film forming apparatus, first to third gasses are introduced into first to third separation chambers through first to third inlets, respectively. The first and second gasses are silicon raw material including gas and carbon raw material including gas, and the third gas does not include silicon and carbon. The first and second gasses are independently supplied to growth space through first and second supply paths extending from the first and second separation chambers, respectively. The third gas is introduced through a third supply path from the third separation chamber between the first and second gasses.
Abstract:
It is an object of the present invention to provide a film-forming apparatus and a film-forming method that can prolong the lifetime of heaters used under high temperature conditions in an epitaxial growth technique. An inert gas discharge portion supplies an inert gas into the space containing the heater, gas is then discharged through the gas discharge portion without influence on the semiconductor substrate during film formation. It is therefore possible to prevent the reaction gas entering into the space containing the high-temperature heaters. This makes it possible to prevent a reaction between hydrogen gas contained in the reaction gas and SiC constituting the heaters. Therefore, it is possible to prevent carbon used as a base material of the heaters from being exposed due to the decomposition of SiC and then reacting with hydrogen gas. This makes it possible to prolong the lifetime of the heaters.
Abstract:
A method for producing a SiC epitaxial wafer according to the present embodiment includes: an epitaxial growth step of growing the epitaxial layer on the SiC single crystal substrate by feeding an Si-based raw material gas, a C-based raw material gas, and a gas including a Cl element to a surface of a SiC single crystal substrate, in which the epitaxial growth step is performed under growth conditions that a film deposition pressure is 30 torr or less, a Cl/Si ratio is in a range of 8 to 12, a C/Si ratio is in a range of 0.8 to 1.2, and a growth rate is 50 μm/h or more from an initial growth stage.
Abstract:
A vehicle control system monitors an infant possibly left behind in a cabin of a vehicle. The vehicle control system performs a danger avoidance process of either avoiding or reducing a danger to the infant based on a monitoring result. The vehicle control system includes an image acquirer for acquiring one or more vehicle stationary images indicating an interior of the cabin. The one or more vehicle stationary images are captured by an imaging device during stopping of the vehicle. A leaving behind determiner is provided to determine presence or absence of an infant left behind in the cabin based one or more vehicle stationary images.
Abstract:
A connection part which connects a terminal part and a processing part include an equalization resistor that is inserted into each main line and a 0-Ω resistor that is a short circuit line for short circuiting a main line of a first terminal and a main line of a second terminal. In the terminal part, the second terminal s unused, and a battery cell adjacent to a high-potential side of a stack bar is connected between the first terminal and a third terminal.
Abstract:
A film-forming apparatus 100 supplies a plurality of gases toward a substrate 101 in a chamber 103 using a shower plate 124. The shower plate 124 has a plurality of gas flow paths 121 extending within the shower plate along a first face of the substrate 101 side and connected to gas pipes 131 supplying a plurality of gases, and a plurality of gas jetting holes 129 bored such that the plurality of gas flow paths 121 and the chamber 103 communicate with each other on the first face side. In the film-forming apparatus 100, the plurality of gases supplied from the gas pipes 131 to the plurality of gas flow paths 121 of the shower plate 124 are supplied from the gas jetting holes 129 to the substrate 101 without being mixed inside of and vicinity of the shower plate 124.
Abstract:
A battery system comprises a plurality of battery modules, each of the battery modules includes an assembled battery configured to include a plurality of battery cells connected in series, a monitoring unit configured to monitor the assembled battery, and an external member configured to be electrically connected to the monitoring unit, and the monitoring unit of each of the battery modules has a generation unit configured to generate, based on an electric signal input from the external member, an identification information item on the corresponding one of the battery modules, the identification information items of the respective battery modules being different from one another.