摘要:
A multi-layer non-volatile memory integrally formed on top of a substrate including active circuitry is disclosed. Each layer of memory includes memory cells (e.g., a two-terminal memory cell) having a multi-resistive state material layer that changes its resistive state between a low resistive state and a high resistive state upon application of a write voltage across the memory cell. Data stored in the memory cells can be non-destructively determined by applying a read voltage across the memory cells. Data storage capacity can be tailored to a specific application by increasing or decreasing the number of memory layers that are integrally fabricated on top of the substrate (e.g., more than four layers or less than four layers). The memory cells can include a non-ohmic device for allowing access to the memory cell only during read and write operations. Each memory layer can comprise a cross point array.
摘要:
A multi-resistive state element that uses barrier electrodes is provided. If certain materials are used as electrodes, the electrodes can be used for multiple purposes. Oxides and nitrides are especially well suited for acting as a barrier layer, and possibly even an adhesion layer and a sacrificial layer.
摘要:
A treated conductive element is provided. A conductive element can be treated by depositing either a reactive metal or a very thin layer of material on the conductive element. The reactive metal (or very thin layer of material) would typically be sandwiched between the conductive element and an electrode. The structure additionally exhibits non-linear IV characteristics, which can be favorable in certain arrays.
摘要:
A memory cell including a memory element and a non-ohmic device (NOD) that are electrically in series with each other is disclosed. The NOD comprises a semiconductor based selection device operative to electrically isolate the memory element from a range of voltages applied across the memory cell that are not read voltages operative read stored data from the memory element or write voltages operative to write data to the memory element. The selection device may comprise a pair of diodes that are electrically in series with each other and disposed in a back-to-back configuration. The memory cell may be fabricated over a substrate (e.g., a silicon wafer) that includes active circuitry. The selection device and the semiconductor materials (e.g., poly-silicon) that form the selection device are fabricated above the substrate and are integrated with other thin film layers of material that form the memory cell.
摘要:
A conductive memory stack is provided. The memory stack includes a bottom electrode, a top electrode and a multi-resistive state element that is sandwiched between the electrodes. The bottom electrode can be described as having a top face with a first surface area, the top electrode has a bottom face with a second surface area and the multi-resistive state element has a bottom face with a third surface area and a top face with a fourth surface area. The multi-resistive state element's bottom face is in contact with the bottom electrode's top face and the multi-resistive state element's top face is in contact with the top electrode's bottom face. Furthermore, the fourth surface area is not equal to the second surface area.
摘要:
A multi-resistive state material that uses dopants is provided. A multi-resistive state material can be used in a memory cell to store information. However, a multi-resistive state material may not have electrical properties that are appropriate for a memory device. Intentionally doping a multi-resistive state material to modify the electrical properties can, therefore, be desirable.
摘要:
A memory including a memory element having islands is provided. The memory has address decoding circuitry and an array of memory plugs. The memory plugs include memory element that have island structures of a first material within the bulk of a second material. The island structures are typically nanoparticles. The memory plugs can be placed in a first resistive state at a first write voltage, placed in a second resistive state at a second write voltage, and have its resistive state determined at a read voltage.
摘要:
Providing a reference voltage to a cross point memory array. The invention is a cross point memory array and some peripheral circuitry that, when activated, provides a reference voltage to a cross point array in order to prevent unselected conductive array lines from floating to an undesired voltage. The peripheral circuitry can be activated before, after or during selection of a specific memory plug. If the peripheral circuitry is activated during selection, only the unselected conductive array lines should be brought to the reference voltage. Otherwise, all the conductive array lines can be brought to the reference voltage.
摘要:
A memory cell including conductive oxide electrodes is disclosed. The memory cell includes a memory element operative to store data as a plurality of resistive states. The memory element includes a layer of a conductive metal oxide (CMO) (e.g., a perovskite) in contact with an electrode that may comprise one or more layers of material. At least one of those layers of material can be a conductive oxide (e.g., a perovskite such as LaSrCoO3—LSCoO or LaNiO3—LNO) that is in contact with the CMO. The conductive oxide layer can be selected as a seed layer operative to provide a good lattice match with and/or a lower crystallization temperature for the CMO. The conductive oxide layer may also be in contact with a metal layer (e.g., Pt). The memory cell additionally exhibits non-linear IV characteristics, which can be favorable in certain arrays, such as non-volatile two-terminal cross-point memory arrays.
摘要:
A treated conductive element is provided. A conductive element can be treated by depositing either a reactive metal or a very thin layer of material on the conductive element. The reactive metal (or very thin layer of material) would typically be sandwiched between the conductive element and an electrode. The structure additionally exhibits non-linear IV characteristics, which can be favorable in certain arrays.