摘要:
A process for making a substantially saturated dendritic hydrocarbon polymer. The process has the following steps: (a) polymerizing an amount of one or more alkadiene monomers and/or one or more alkenylaromatic polymers under anionic conditions in the presence of a di- or tri-functional organic lithium initiator to produce a polyalkadiene defining a multiplicity of lithiated chain ends; (b) reacting the polyalkadiene with an amount of a tri- or di-functional silane coupling agent to form a dendritic polyalkadiene; and (c) hydrogenating the dendritic polyalkadiene to form a substantially saturated dendritic hydrocarbon polymer. Also a process for process for making a dendritic hydrocarbon polymer, comprising: (a) polymerizing an amount of one or more alkadiene monomers and/or one or more alkenylaromatic polymers under anionic conditions in the presence of a di- or tri-functional organic lithium initiator to produce a hydrocarbon polymer defining a multiplicity of lithiated chain ends; and (b) reacting the hydrocarbon polymer with an amount of a tri- or di-functional silane coupling agent to form a dendritic hydrocarbon polymer.
摘要:
A process for making a substantially saturated dendritic hydrocarbon polymer. The process has the following steps: (a) polymerizing an amount of a first alkadiene monomer under anionic conditions in the presence of a first organic monolithium initiator to produce a linear polyalkadiene having a lithiated chain end; (b) reacting the linear polyalkadiene with an amount of a second organic monolithium initiator in the presence of tetramethylethylene diamine to form a multilithiated polyalkadiene; (c) reacting the multilithiated polyalkadiene with an amount of a second alkadiene monomer to form a branched polyalkadiene; (d) repeating steps (b) and (c) with the branched polyalkadiene one or more times to prepare a dendritic polyalkadiene; and (e) hydrogenating the dendritic polyalkadiene to form the substantially saturated dendritic hydrocarbon polymer.
摘要:
A process for making a substantially saturated dendritic hydrocarbon polymer. The process has the following steps: (a) polymerizing an amount of one or more alkadiene monomers and/or one or more alkenylaromatic polymers under anionic conditions in the presence of a di- or tri-functional organic lithium initiator to produce a polyalkadiene defining a multiplicity of lithiated chain ends; (b) reacting the polyalkadiene with an amount of a tri- or di-functional silane coupling agent to form a dendritic polyalkadiene; and (c) hydrogenating the dendritic polyalkadiene to form a substantially saturated dendritic hydrocarbon polymer. Also a process for process for making a dendritic hydrocarbon polymer, comprising: (a) polymerizing an amount of one or more alkadiene monomers and/or one or more alkenylaromatic polymers under anionic conditions in the presence of a di- or tri-functional organic lithium initiator to produce a hydrocarbon polymer defining a multiplicity of lithiated chain ends; and (b) reacting the hydrocarbon polymer with an amount of a tri- or di-functional silane coupling agent to form a dendritic hydrocarbon polymer.
摘要:
A process for making a substantially saturated dendritic hydrocarbon polymer. The process has the following steps: (a) polymerizing an amount of a first alkadiene monomer under anionic conditions in the presence of a first organic monolithium initiator to produce a linear polyalkadiene having a lithiated chain end; (b) reacting the linear polyalkadiene with an amount of a second organic monolithium initiator in the presence of tetramethylethylene diamine to form a multilithiated polyalkadiene; (c) reacting the multilithiated polyalkadiene with an amount of a second alkadiene monomer to form a branched polyalkadiene; (d) repeating steps (b) and (c) with the branched polyalkadiene one or more times to prepare a dendritic polyalkadiene; and (e) hydrogenating the dendritic polyalkadiene to form the substantially saturated dendritic hydrocarbon polymer.
摘要:
Provided are blends of branched hydrocarbon comb polymers having tailored branching and molecular weight parameters, with substantially linear polymers. Such blends have been found to have improved extensional rheological properties, while maintaining nearly the viscosity of the substantially linear polymers. The blends of the hydrocarbon comb polymers with the substantially linear polymers thus maintain the extrusion processing characteristics of the linear polymer alone, but have improved extensional flow processability, with strain hardening ratios (SHR) greater than 1. The blends are effective in blown film processing. Also disclosed are related methods for improving extensional flow processability using the branched hydrocarbon comb polymers, as well as the branched hydrocarbon comb polymers themselves, including as a property enhancing additive for such substantially linear polymers.
摘要:
Provided are blends of branched hydrocarbon comb polymers having tailored branching and molecular weight parameters, with substantially linear polymers. Such blends have been found to have improved extensional rheological properties, while maintaining nearly the viscosity of the substantially linear polymers. The blends of the hydrocarbon comb polymers with the substantially linear polymers thus maintain the extrusion processing characteristics of the linear polymer alone, but have improved extensional flow processability, with strain hardening ratios (SHR) greater than 1. The blends are effective in blown film processing. Also disclosed are related methods for improving extensional flow processability using the branched hydrocarbon comb polymers, as well as the branched hydrocarbon comb polymers themselves, including as a property enhancing additive for such substantially linear polymers.
摘要:
Gel-free dispersant additives for lubricating and fuel oil compositions comprise at least one adduct of (A) .alpha.-olefin homopolymer or interpolymer of 700 to 10,000 number average molecular weight, free radically grafted with an average of from about 0.5 to about 5 carboxylic acid producing moieties per polymer chain, and (B) at least one non-aromatic nucleophilic post-treating reactant selected from (i) amine compounds containing only a single reactive amino group per molecule, (ii) alcohol compounds containing only a single hydroxy group per molecule, (iii) polyamine compounds containing at least two reactive amino groups per molecule, (iv) polyol compounds containing at least two reactive hydroxy groups per molecule, (v) aminoalcohol compounds containing at least one reactive amino group and at least one reactive hydroxy group per molecule, and (vi) mixtures of (i) to (v); provided that when said post-treating reactant includes one or more of (iii), (iv) or (v), the reaction between (A) and (B) is conducted in the presence of sufficient chain-stopping or end-capping co-reactant (C) to ensure that the grafted and post-reacted product mixture is gel-free.
摘要:
Provided are oil-in-water and water-in-oil emulsion compositions including from 0.01 to 5 wt % of a halogenated elastomer emulsifier, and optionally from to 0.5 wt % of a polyalkylene amine co-emulsifier. The emulsion compositions disclosed herein provide for increased interfacial elasticity and decreased interfacial tension at the oil-water interface to increase resistance to coalescence of dispersed water droplets of a water-in-oil emulsion or oil droplets of an oil-in-water emulsion. The emulsion compositions disclosed herein are suitable for lubricant applications due to their resistance to shear thinning.
摘要:
Polyethylene blend compositions suitable for injection molding, injection molded articles, and processes for injection molding articles are provided. The polyethylene compositions include a first polyethylene having a melt index of 0.1 to 3.0 g/10 min and a density of from 0.905 to 0.938 g/cm3; and a second polyethylene having a melt index of 10 to 500 g/10 min and a density of 0.945 to 0.975 g/cm3. The compositions have a density of from 0.920 to 0.973 g/cm3 and a melt index of 2 to 200 g/10 min, and the density of the second polyethylene is from 0.037 to 0.062 g/cm3 greater than the density of the first polyethylene. The compositions exhibit improved physical properties, such as Environmental Stress Crack Resistance, relative to conventional compositions of similar melt index and density. In certain embodiments, the compositions, and articles produced therefrom, also exhibit an improved balance of toughness properties and processability properties.
摘要翻译:提供适用于注射成型的聚乙烯共混组合物,注模制品和注射成型制品的方法。 聚乙烯组合物包括熔体指数为0.1至3.0g / 10min,密度为0.905至0.938g / cm 3的第一聚乙烯; 和熔体指数为10〜500g / 10min,密度为0.945〜0.975g / cm 3的第二聚乙烯。 组合物的密度为0.920至0.973g / cm 3,熔体指数为2至200g / 10min,第二聚乙烯的密度为0.037至0.062g / SUP> 3 SUP>大于第一聚乙烯的密度。 相对于具有类似熔体指数和密度的常规组合物,组合物表现出改善的物理性能,例如环境应力开裂性。 在某些实施方案中,组合物和由其制备的制品也显示出韧性和加工性能的改善的平衡。
摘要:
Gel-free dispersant additives for lubricating and fuel oil compositions comprise at least one adduct of (A) .alpha.-olefin homopolymer or interpolymer of 700 to 10,000 number average molecular weight, free radically grafted with an average of from about 0.5 to about 5 carboxylic acid producing moieties per polymer chain, and (B) at least one non-aromatic nucleophilic post-treating reactant selected from (i) amine compounds containing only a single reactive amino group per molecule, (ii) alcohol compounds containing only a single hydroxy group per molecule, (iii) polyamine compounds containing at least two reactive amino groups per molecule, (iv) polyol compounds containing at least two reactive hydroxy groups per molecule, (v) aminoalcohol compounds containing at least one reactive amino group and at least one reactive hydroxy group per molecule, and (vi) mixtures of (i) to (v); provided that when said post-treating reactant includes one or more of (iii), (iv) or (v), the reaction between (A) and (B) is conducted in the presence of sufficient chain-stopping or end-capping co-reactant (C) to ensure that the grafted and post-reacted product mixture is gel-free.