摘要:
Methods, systems, and apparatuses for annealing semiconductor nanowires and for fabricating electrical devices are provided. Nanowires are deposited on a substrate. A plurality of electrodes is formed. The nanowires are in electrical contact with the plurality of electrodes. The nanowires are doped. A polarized laser beam is applied to the nanowires to anneal at least a portion of the nanowires. The nanowires may be aligned substantially parallel to an axis. The laser beam may be polarized in various ways to modify absorption of radiation of the applied laser beam by the nanowires. For example, the laser beam may be polarized in a direction substantially parallel to the axis or substantially perpendicular to the axis to enable different nanowire absorption profiles.
摘要:
Methods, systems, and apparatuses for annealing semiconductor nanowires and for fabricating electrical devices are provided. Nanowires are deposited on a substrate. A plurality of electrodes is formed. The nanowires are in electrical contact with the plurality of electrodes. The nanowires are doped. A polarized laser beam is applied to the nanowires to anneal at least a portion of the nanowires. The nanowires may be aligned substantially parallel to an axis. The laser beam may be polarized in various ways to modify absorption of radiation of the applied laser beam by the nanowires. For example, the laser beam may be polarized in a direction substantially parallel to the axis or substantially perpendicular to the axis to enable different nanowire absorption profiles.
摘要:
Embodiments of the present invention are provided for improved contact doping and annealing systems and processes. In embodiments, a plasma ion immersion implantation (PIII) process is used for contact doping of nanowires and other nanoelement based thin film devices. According to further embodiments of the present invention, pulsed laser annealing using laser energy at relatively low laser fluences below about 100 mJ/cm2 (e.g., less than about 50 mJ/cm2, e.g., between about 2 and 18 mJ/cm2) is used to anneal nanowire and other nanoelement-based devices on substrates, such as low temperature flexible substrates, e.g., plastic substrates.
摘要翻译:提供本发明的实施例用于改进的接触掺杂和退火系统和工艺。 在实施例中,等离子体离子浸没注入(PIII)工艺用于纳米线和其它基于纳米元件的薄膜器件的接触掺杂。 根据本发明的另外的实施例,使用使用低于约100mJ / cm 2(例如,小于约50mJ / cm 2,例如约2至18mJ / cm 2)的相对低的激光能量密度的激光能量的脉冲激光退火 以在基底上退火纳米线和其它基于纳米元件的器件,例如低温柔性衬底,例如塑料衬底。
摘要:
The present invention is directed to thin film transistors using nanowires (or other nanostructures such as nanoribbons, nanotubes and the like) incorporated in and/or disposed proximal to conductive polymer layer(s), and production scalable methods to produce such transistors. In particular, a composite material comprising a conductive polymeric material such as polyaniline (PANI) or polypyrrole (PPY) and one or more nanowires incorporated therein is disclosed. Several nanowire-TFT fabrication methods are also provided which in one exemplary embodiment includes providing a device substrate; depositing a first conductive polymer material layer on the device substrate; defining one or more gate contact regions in the conductive polymer layer; depositing a plurality of nanowires over the conductive polymer layer at a sufficient density of nanowires to achieve an operational current level; depositing a second conductive polymer material layer on the plurality of nanowires; and forming source and drain contact regions in the second conductive polymer material layer to thereby provide electrical connectivity to the plurality of nanowires, whereby the nanowires form a channel having a length between respective ones of the source and drain regions.
摘要:
The present invention is directed to methods to harvest, integrate and exploit nanomaterials, and particularly elongated nanowire materials. The invention provides methods for harvesting nanowires that include selectively etching a sacrificial layer placed on a nanowire growth substrate to remove nanowires. The invention also provides methods for integrating nanowires into electronic devices that include placing an outer surface of a cylinder in contact with a fluid suspension of nanowires and rolling the nanowire coated cylinder to deposit nanowires onto a surface. Methods are also provided to deposit nanowires using an ink-jet printer or an aperture to align nanowires. Additional aspects of the invention provide methods for preventing gate shorts in nanowire based transistors. Additional methods for harvesting and integrating nanowires are provided.
摘要:
Methods of doping nanostructures, such as nanowires, are disclosed. The methods provide a variety of approaches for improving existing methods of doping nanostructures. The embodiments include the use of a sacrificial layer to promote uniform dopant distribution within a nanostructure during post-nanostructure synthesis doping. In another embodiment, a high temperature environment is used to anneal nanostructure damage when high energy ion implantation is used. In another embodiment rapid thermal annealing is used to drive dopants from a dopant layer on a nanostructure into the nanostructure. In another embodiment a method for doping nanowires on a plastic substrate is provided that includes depositing a dielectric stack on a plastic substrate to protect the plastic substrate from damage during the doping process. An embodiment is also provided that includes selectively using high concentrations of dopant materials at various times in synthesizing nanostructures to realize novel crystallographic structures within the resulting nanostructure.
摘要:
The present invention is directed to thin film transistors using nanowires (or other nanostructures such as nanoribbons, nanotubes and the like) incorporated in and/or disposed proximal to conductive polymer layer(s), and production scalable methods to produce such transistors. In particular, a composite material comprising a conductive polymeric material such as polyaniline (PANI) or polypyrrole (PPY) and one or more nanowires incorporated therein is disclosed. Several nanowire-TFT fabrication methods are also provided which in one exemplary embodiment includes providing a device substrate; depositing a first conductive polymer material layer on the device substrate; defining one or more gate contact regions in the conductive polymer layer; depositing a plurality of nanowires over the conductive polymer layer at a sufficient density of nanowires to achieve an operational current level; depositing a second conductive polymer material layer on the plurality of nanowires; and forming source and drain contact regions in the second conductive polymer material layer to thereby provide electrical connectivity to the plurality of nanowires, whereby the nanowires form a channel having a length between respective ones of the source and drain regions.
摘要:
The present invention relates to a system and process for producing a nanowire-material composite. A substrate having nanowires attached to a portion of at least one surface is provided. A material is deposited over the portion to form the nanowire-material composite. The process further optionally includes separating the nanowire-material composite from the substrate to form a freestanding nanowire-material composite. The freestanding nanowire material composite is optionally further processed into an electronic substrate. A variety of electronic substrates can be produced using the methods described herein. For example, a multi-color light-emitting diode can be produced from multiple, stacked layers of nanowire-material composites, each composite layer emitting light at a different wavelength.
摘要:
The present invention is directed to systems and methods for nanowire growth and harvesting. In an embodiment, methods for nanowire growth and doping are provided, including methods for epitaxial oriented nanowire growth using a combination of silicon precursors, as well as us of patterned substrates to grow oriented nanowires. In a further aspect of the invention, methods to improve nanowire quality through the use of sacrifical growth layers are provided. In another aspect of the invention, methods for transferring nanowires from one substrate to another substrate are provided.
摘要:
The present invention relates to a system and process for producing a nanowire-material composite. A substrate having nanowires attached to a portion of at least one surface is provided. A material is deposited over the portion to form the nanowire-material composite. The process further optionally includes separating the nanowire-material composite from the substrate to form a freestanding nanowire-material composite. The freestanding nanowire material composite is optionally further processed into a electronic substrate. A variety of electronic substrates can be produced using the methods described herein. For example, a multi-color light-emitting diode can be produced from multiple, stacked layers of nanowire-material composites, each composite layer emitting light at a different wavelength.