摘要:
Electrostatic chucks (ESCs) with RF and temperature uniformity are described. For example, an ESC includes a top dielectric layer. An upper metal portion is disposed below the top dielectric layer. A second dielectric layer is disposed above a plurality of pixilated resistive heaters and surrounded in part by the upper metal portion. A third dielectric layer is disposed below the second dielectric layer, with a boundary between the third dielectric layer and the second dielectric layer. A plurality of vias is disposed in the third dielectric layer. A bus power bar distribution layer is disposed below and coupled to the plurality of vias. A fourth dielectric layer is disposed below the bus bar power distribution layer, with a boundary between the fourth dielectric layer and the third dielectric layer. A metal base is disposed below the fourth dielectric layer. The metal base includes a plurality of high power heater elements housed therein.
摘要:
Electrostatic chucks (ESCs) with RF and temperature uniformity are described. For example, an ESC includes a top dielectric layer. An upper metal portion is disposed below the top dielectric layer. A second dielectric layer is disposed above a plurality of pixilated resistive heaters and surrounded in part by the upper metal portion. A third dielectric layer is disposed below the second dielectric layer, with a boundary between the third dielectric layer and the second dielectric layer. A plurality of vias is disposed in the third dielectric layer. A bus power bar distribution layer is disposed below and coupled to the plurality of vias. A fourth dielectric layer is disposed below the bus bar power distribution layer, with a boundary between the fourth dielectric layer and the third dielectric layer. A metal base is disposed below the fourth dielectric layer. The metal base includes a plurality of high power heater elements housed therein.
摘要:
Substrate processing systems are described that have a capacitively coupled plasma (CCP) unit positioned inside a process chamber. The CCP unit may include a plasma excitation region formed between a first electrode and a second electrode. The first electrode may include a first plurality of openings to permit a first gas to enter the plasma excitation region, and the second electrode may include a second plurality of openings to permit an activated gas to exit the plasma excitation region. The system may further include a gas inlet for supplying the first gas to the first electrode of the CCP unit, and a pedestal that is operable to support a substrate. The pedestal is positioned below a gas reaction region into which the activated gas travels from the CCP unit.
摘要:
A wafer carrier is described with independent isolated heater zones. In one example, the carrier has a puck to carry a workpiece for fabrication processes, a heater plate having a plurality of thermally isolated blocks each thermally coupled to the puck, and each having a heater to heat a respective block of the heater plate, and a cooling plate fastened to and thermally coupled to the heater plate, the cooling plate having a cooling channel to carry a heat transfer fluid to transfer heat from the cooling plate.
摘要:
Embodiments of the present invention provide a gas distribution plate assembly having protective elements for plasma processing. The gas distribution plate assembly includes a base plate having a front side and a backside, and a plurality of protective elements in direct contact with the base plate. The protective elements cover the front side of the base plate to protect the base plate from a plasma processing environment during use.
摘要:
Methods of depositing and curing a dielectric material on a substrate are described. The methods may include the steps of providing a processing chamber partitioned into a first plasma region and a second plasma region, and delivering the substrate to the processing chamber, where the substrate occupies a portion of the second plasma region. The methods may further include forming a first plasma in the first plasma region, where the first plasma does not directly contact with the substrate, and depositing the dielectric material on the substrate to form a dielectric layer. One or more reactants excited by the first plasma are used in the deposition of the dielectric material. The methods may additional include curing the dielectric layer by forming a second plasma in the second plasma region, where one or more carbon-containing species is removed from the dielectric layer.
摘要:
Methods to reduce film cracking in a dielectric layer are described. The methods may include the steps of depositing a first dielectric film on a substrate and removing a top portion of the first dielectric film by performing an etch on the film. The methods may also include depositing a second dielectric film over the etched first film, and removing a top portion of the second dielectric film. In addition, the methods may include annealing the first and second dielectric films to form the dielectric layer, where the removal of the top portions from the first and the second dielectric films reduces a stress level in the dielectric layer.
摘要:
Substrate processing systems are described that have a capacitively coupled plasma (CCP) unit positioned inside a process chamber. The CCP unit may include a plasma excitation region formed between a first electrode and a second electrode. The first electrode may include a first plurality of openings to permit a first gas to enter the plasma excitation region, and the second electrode may include a second plurality of openings to permit an activated gas to exit the plasma excitation region. The system may further include a gas inlet for supplying the first gas to the first electrode of the CCP unit, and a pedestal that is operable to support a substrate. The pedestal is positioned below a gas reaction region into which the activated gas travels from the CCP unit.
摘要:
A substrate support comprising a top ceramic plate providing a substrate support surface for supporting a substrate during substrate processing, a substrate pedestal having coolant channels formed therein and a thermoelectric deck sandwiched between the top ceramic plate and substrate pedestal. The thermoelectric deck includes a plurality of embedded thermoelectric elements that can either heat or cool the substrate support surface.
摘要:
A method of making an electrostatic chuck comprising positioning a plate into a channel in a body to form a plenum and inserting a dielectric component into an opening in the plate, where the dielectric component defines a portion of a passage from the plenum. Thereafter, depositing a dielectric layer covering at least a portion of the body and at least a portion of the plate to form a support surface. The dielectric layer is polished to a specified thickness. In one embodiment, the polishing process forms an opening through the dielectric layer to enable the dielectric component to define a passage between the support surface and the plenum. In another embodiment, at least a portion of the dielectric layer is porous proximate the dielectric component such that the porous dielectric layer and the dielectric component form a passage between the support surface and the plenum. In a further embodiment, a hole is formed through the dielectric layer and the hole in the dielectric layer and the dielectric component form a passage between the support surface and the plenum.