摘要:
The present invention relates to a composition for manufacturing insulation materials of an electrical wire and an electrical wire manufactured using the same. The composition for manufacturing insulation materials of an electrical wire according to the present invention includes 100 parts by weight of a base resin, made by blending 20 to 70 weight % of any one resin of an unsaturated organosilane grafted polyethylene and an unsaturated organosilane grafted ethylene alpha olefine copolymer, and 30 to 80 weight % of an unsaturated organosilane grafted ethylene copolymer; 10 to 25 parts by weight of a brominated flame retardant; 10 to 50 parts by weight of an inorganic flame retardant; and 0.2 to 5 parts by weight of compound, as a crosslink retardant, represented as a general formula of XnSi(OR)4-n (X is a phenyl group, R is a methyl group and n is an integer of 1 to 3).
摘要:
The present invention relates to a peelable and water-crosslinked semiconductive resin composition. The peelable and water-crosslinked semiconductive resin composition includes 100 parts by weight of a basic resin; 20 to 80 parts by weight of carbon black based on weight of the basic resin; and 0.05 to 5.0 parts by weight of an amide-based lubricant based on weight of the basic resin, wherein the basic resin is a mixed resin including 60 to 80 weight % of an ethylene-based copolymer resin that is bonded with an unsaturated organic silane and has a melting point of 80° C. or above; 5 to 20 weight % of an ethylene-acrylic acid copolymer or its alkali metal salt; and 5 to 40 parts by weight of an ethylene propylene copolymer containing 5 to 20 weight % of ethylene, or a propylene rein.
摘要:
A semiconductor device includes a substrate divided into a memory cell region and a logic region. A split gate electrode structure is formed in a memory cell region of a substrate. A silicon oxide layer is formed on a sidewall of the split gate electrode structure and a surface of the substrate. A word line is formed on the silicon oxide layer that is positioned on the sidewall of the split gate electrode structure. The word line has an upper width and a lower width. The lower width is greater than the upper width. A logic gate pattern is formed on a logic region of the substrate. The logic gate pattern has a thickness thinner than the lower width of the word line.
摘要:
A method of forming a floating gate of a non-volatile memory device can include etching a mask pattern formed between field isolation regions in a field isolation pattern on a substrate to recess a surface of the mask pattern below an upper surface of adjacent field isolation regions to form an opening having a width defined by a side wall of the adjacent field isolation regions above the surface. Then the adjacent field isolation regions is etched to increase the width of the opening.
摘要:
A semiconductor device includes a substrate divided into a memory cell region and a logic region. A split gate electrode structure is formed in a memory cell region of a substrate. A silicon oxide layer is formed on a sidewall of the split gate electrode structure and a surface of the substrate. A word line is formed on the silicon oxide layer that is positioned on the sidewall of the split gate electrode structure. The word line has an upper width and a lower width. The lower width is greater than the upper width. A logic gate pattern is formed on a logic region of the substrate. The logic gate pattern has a thickness thinner than the lower width of the word line.
摘要:
Example embodiments of the present invention relate to methods of manufacturing a semiconductor device. Other example embodiments of the present invention relate to methods of manufacturing a semiconductor device having a gate electrode. In the method of manufacturing the semiconductor device, a gate electrode may be formed on a semiconductor substrate. Damage in the semiconductor substrate and a sidewall of the gate electrode may be cured, or repaired, by a radical re-oxidation process to form an oxide layer on the semiconductor substrate and the gate electrode. The radical re-oxidation process may be performed by providing a nitrogen gas onto the semiconductor substrate while increasing a temperature of the semiconductor substrate to a first temperature to passivate a surface of the gate electrode under a nitrogen gas atmosphere, providing an oxygen gas onto the semiconductor substrate while increasing the temperature from a first temperature to a second temperature to perform a first oxidation process and/or performing a second oxidation process at the second temperature.
摘要:
A method of fabricating a flash memory cell having a split gate structure. A sacrificial layer is formed on a floating gate layer formed on a semiconductor substrate. The sacrificial layer is etched to form an opening exposing a portion of the floating gate layer. A gate interlayer insulating layer pattern is formed inside the opening. After removing the sacrificial layer pattern and etching the floating gate layer (using the gate interlayer insulating layer pattern as an etch mask), a floating gate is formed under the gate interlayer insulating layer pattern. A control gate is formed overlapping a portion of the floating gate.
摘要:
A method of forming a floating gate of a non-volatile memory device can include etching a mask pattern formed between field isolation regions in a field isolation pattern on a substrate to recess a surface of the mask pattern below an upper surface of adjacent field isolation regions to form an opening having a width defined by a side wall of the adjacent field isolation regions above the surface. Then the adjacent field isolation regions is etched to increase the width of the opening.
摘要:
A semiconductor device having reduced pitting may be formed from isolation layer patterns on a semiconductor substrate defining an active region, a tunnel oxide layer on the active region, the tunnel oxide layer having a nitrified surface, a floating gate on the tunnel oxide layer, a dielectric layer on the floating gate, and a control gate on the dielectric layer.
摘要:
There is provided a method of fabricating a split-gate flash memory cell using a spacer oxidation process. An oxidation barrier layer is formed on a floating gate layer, and an opening to expose a portion of the floating gate layer is formed in the oxidation barrier layer. Subsequently, a spacer is formed on a sidewall of the opening with a material layer having insulation property by oxidizing, and an inter-gate oxide layer pattern between a floating gate and a control gate is formed in the opening while the spacer is oxidized by performing an oxidation process.