摘要:
Terminal pads and methods of fabricating terminal pads. The methods including forming a conductive diffusion barrier under a conductive pad in or overlapped by a passivation layer comprised of multiple dielectric layers including diffusion barrier layers. The methods including forming the terminal pads subtractively or by a damascene process.
摘要:
Terminal pads and methods of fabricating terminal pads. The methods including forming a conductive diffusion barrier under a conductive pad in or overlapped by a passivation layer comprised of multiple dielectric layers including diffusion barrier layers. The methods including forming the terminal pads subtractively or by a damascene process.
摘要:
Terminal pads and methods of fabricating terminal pads. The methods including forming a conductive diffusion barrier under a conductive pad in or overlapped by a passivation layer comprised of multiple dielectric layers including diffusion barrier layers. The methods including forming the terminal pads subtractively or by a damascene process.
摘要:
Terminal pads and methods of fabricating terminal pads. The methods including forming a conductive diffusion barrier under a conductive pad in or overlapped by a passivation layer comprised of multiple dielectric layers including diffusion barrier layers. The methods including forming the terminal pads subtractively or by a damascene process.
摘要:
A method of fabricating a MIM capacitor is provided. The method includes providing a substrate including a dielectric layer formed on a first conductive layer and a second conductive layer formed over the dielectric layer, and patterning a mask on the second conductive layer. Exposed portions of the second conductive layer are removed to form an upper plate of a MIM capacitor having edges substantially aligned with respective edges of the mask. The upper plate is undercut so that edges of the upper plate are located under the mask. Exposed portions of the dielectric layer and the first conductive layer are removed using the mask to form a capacitor dielectric layer and a lower plate of the MIM capacitor having edges substantially aligned with respective edges of the mask.
摘要:
Method of fabricating a MIM capacitor and MIM capacitor. The method includes providing a substrate including a dielectric layer formed on a first conductive layer and a second conductive layer formed over the dielectric layer, and patterning a mask on the second conductive layer. Exposed portions of the second conductive layer are removed to form an upper plate of a MIM capacitor having edges substantially aligned with respective edges of the mask. The upper plate is undercut so that edges of the upper plate are located under the mask. Exposed portions of the dielectric layer and the first conductive layer are removed using the mask to form a capacitor dielectric layer and a lower plate of the MIM capacitor having edges substantially aligned with respective edges of the mask.
摘要:
An Integrated Circuit (IC) chip with one or more vertical plate capacitors, each vertical plate capacitor connected to circuits on the IC chip and a method of making the chip capacitors. The vertical plate capacitors are formed with base plate pattern (e.g., damascene copper) on a circuit layer and at least one upper plate layer (e.g., dual damascene copper) above, connected to and substantially identical with the base plate pattern. A vertical pair of capacitor plates are formed by the plate layer and base plate. Capacitor dielectric between the vertical pair of capacitor plates is, at least in part, a high-k dielectric.
摘要:
A BEOL thin-film resistor adapted for flexible integration rests on a first layer of ILD. The thickness of the first layer of ILD and the resistor thickness combine to match the nominal design thickness of vias in the layer of concern. A second layer of ILD matches the resistor thickness and is planarized to the top surface of the resistor. A third layer of ILD has a thickness equal to the nominal value of the interconnections on this layer. Dual damascene interconnection apertures and apertures for making contact with the resistor are formed simultaneously, with the etch stop upper cap layer in the resistor protecting the resistive layer while the vias in the dual damascene apertures are formed.
摘要:
In the course of forming a resistor in the back end of an integrated circuit, an intermediate dielectric layer is deposited and a trench etched through it and into a lower dielectric layer by a controllable amount, so that the top of a resistor layer deposited in the trench is close in height to the top of the lower dielectric layer; the trench is filled and the resistor layer outside the trench is removed, after which a second dielectric layer is deposited. Vias passing through the second dielectric layer to contact the resistor then have the same depth as vias contacting metal interconnects in the lower dielectric layer. A tri-layer resistor structure is employed in which the resistive film is sandwiched between two protective layers that block diffusion between the resistor and BEOL ILD layers.
摘要:
Passive components are formed in the back end by using the same deposition process and materials as in the rest of the back end. Resistors are formed by connecting in series individual structures on the nth, (n+1)th, etc levels of the back end. Capacitors are formed by constructing a set of vertical capacitor plates from a plurality of levels in the back end, the plates being formed by connecting electrodes on two or more levels of the back end by vertical connection members.