Modular adaptation and configuration of a nework node architecture
    1.
    发明申请
    Modular adaptation and configuration of a nework node architecture 有权
    一种nework节点架构的模块化适配和配置

    公开(公告)号:US20070009262A1

    公开(公告)日:2007-01-11

    申请号:US11479778

    申请日:2006-06-30

    IPC分类号: H04B10/20

    摘要: The present invention provides a system, apparatus and method for modularly adapting a network node architecture to function in one of a plurality of potential node types. The architecture includes a configurable switching element, integrated optics, and a plurality of modules that allow a “type” of node to be adapted and configured within the base architecture. The module interfaces may be optical or electrical and be used to construct various different types of nodes including regenerators, add/drop nodes, terminal nodes, and multi-way nodes using the same base architecture.

    摘要翻译: 本发明提供了一种用于模块化地适应网络节点体系结构以在多个潜在节点类型之一起作用的系统,装置和方法。 该架构包括可配置的开关元件,集成光学元件和允许在基础架构内适配和配置节点“类型”的多个模块。 模块接口可以是光学的或电的,并且可以用于构造各种不同类型的节点,包括再生器,添加/分出节点,终端节点和使用相同基础架构的多路节点。

    Universal digital framer architecture for transport of client signals of any client payload and format type

    公开(公告)号:US20050286521A1

    公开(公告)日:2005-12-29

    申请号:US11154455

    申请日:2005-06-16

    CPC分类号: H04J3/1652 H04J3/08 H04J3/14

    摘要: Client signals to be transported in a transmission network, particularly an optical transmission network, may have different payload envelope rates and are digitally mapped on the client egress side into first transport frames (also referred to as iDTF frames, or intra-node or internal digital transport frames), at the client side for intra-transport within terminal network elements (NEs) and further digitally mapped into second transport frames (also referred to as DTFs or digital transport frames) for inter-transport across the network or a link which, through byte stuffing carried out in the first transport frames so that they always have the same frame size. As a result, the system of framers provides for a DTF format to always have a uniformly universal frame rate throughout the network supporting any client signal frequency, whether a standard client payload or a proprietary client payload, as long as its rate is below payload envelope rate of the client signal. At the client signal ingress side, the signal are digitally demapped from the second transport frames (DTF format) into the first transport frames where the stuff bytes are removed and accordingly processed at an intermediate node element before further transport, or digitally demapped from the first transport frames (iDTF format) to reproduce or reassemble the client signal or signals comprising the client payload at the client payload envelope rate for reception at the client's equipment. Among various features disclosed, two predominate features are (1) a single channel or network rate for transport of all signals between network elements (NEs) and end terminal network elements and (2) the digitally wrapping of different types of payloads into N client side or first frames using stuff bytes to render each client side frame size equal to a predetermined value. Then the stuffed first frames are wrapped into line side or second frames for transport over the network at the same high speed line rate for all digitally wrapped client signals. The client side framers may be, for example, running at the lowest signal rate encountered, to digitally wrap then into parallel N client signals or digitally wrap a client signal multi-sected into N parts, where these two different client signals have different payload rates.

    OPTICAL TRANSMISSION NETWORK WITH ASYNCHRONOUS MAPPING AND DEMAPPING AND DIGITAL WRAPPER FRAME FOR THE SAME

    公开(公告)号:US20080044183A1

    公开(公告)日:2008-02-21

    申请号:US11876714

    申请日:2007-10-22

    IPC分类号: H04B10/00

    摘要: An optical transmission network is inherently asynchronous due to the utilization of a variable overhead ratio (V-OHR). The network architecture makes extensive use of OEO regeneration, i.e., deals with any electronic reconditioning to correct for transmission impairments, such as, for example, FEC encoding, decoding and re-encoding, signal reshaping, retiming as well as signal regeneration. The optical transmission network includes a plesiochronous clocking system with intermediate nodes designed to operate asynchronously with a single local frequency clock without complicated network synchronization schemes employing high cost clocking devices such as phase locked loop (PLL) control with crystal oscillators and other expensive system components. The asynchronous network operation provides for asynchronous remapping or remapping of any client signal utilizing any type of transmission protocol where the line side rate or frequency is always the same frequency for the payload signal and the local frequency at an intermediate node is set to a local reference clock in accordance with the payload type and its overhead ratio, i.e., the overhead ratio is varied to meet the desired difference between the line rate or frequency and the desired client signal payload rate or frequency for the particular client signal payload type.

    OPTICAL TRANSMISSION NETWORK WITH ASYNCHRONOUS MAPPING AND DEMAPPING AND DIGITAL WRAPPER FRAME FOR THE SAME
    4.
    发明申请
    OPTICAL TRANSMISSION NETWORK WITH ASYNCHRONOUS MAPPING AND DEMAPPING AND DIGITAL WRAPPER FRAME FOR THE SAME 有权
    具有异步映射和解码功能的光传输网络及其数字包装框架

    公开(公告)号:US20080037984A1

    公开(公告)日:2008-02-14

    申请号:US11876727

    申请日:2007-10-22

    IPC分类号: H04J14/00

    摘要: An optical transmission network is inherently asynchronous due to the utilization of a variable overhead ratio (V-OHR). The network architecture makes extensive use of OEO regeneration, i.e., deals with any electronic reconditioning to correct for transmission impairments, such as, for example, FEC encoding, decoding and re-encoding, signal reshaping, retiming as well as signal regeneration. The optical transmission network includes a plesiochronous clocking system with intermediate nodes designed to operate asynchronously with a single local frequency clock without complicated network synchronization schemes employing high cost clocking devices such as phase locked loop (PLL) control with crystal oscillators and other expensive system components. The asynchronous network operation provides for asynchronous remapping or remapping of any client signal utilizing any type of transmission protocol where the line side rate or frequency is always the same frequency for the payload signal and the local frequency at an intermediate node is set to a local reference clock in accordance with the payload type and its overhead ratio, i.e., the overhead ratio is varied to meet the desired difference between the line rate or frequency and the desired client signal payload rate or frequency for the particular client signal payload type.

    摘要翻译: 由于使用可变开销比(V-OHR),光传输网络固有地是异步的。 网络架构广泛使用OEO再生,即处理任何电子修复以校正传输损伤,例如FEC编码,解码和重新编码,信号整形,重新定时以及信号再生。 光传输网络包括一个专用时钟系统,其中间节点设计成与单个本地频率时钟异步运行,而无需采用高成本时钟设备(如晶体振荡器和其他昂贵的系统组件的锁相环(PLL))控制)的复杂网络同步方案。 异步网络操作提供使用任何类型的传输协议的任何客户端信号的异步重映射或重新映射,其中线路边速率或频率对于有效载荷信号总是相同的频率,并且中间节点处的本地频率被设置为本地参考 根据有效载荷类型和其开销比,即,开销比被改变以满足线速率或频率与特定客户端信号有效载荷类型的期望的客户端信号有效载荷速率或频率之间的期望差。

    Chromatic dispersion compensator (CDC) in a photonic integrated circuit (PIC) chip and method of operation

    公开(公告)号:US20050111848A1

    公开(公告)日:2005-05-26

    申请号:US10971890

    申请日:2004-10-22

    IPC分类号: G02B6/34 H04B10/18 H04B10/12

    摘要: An optical equalizer/dispersion compensator (E/CDC) comprises an input/output for receiving a multiplexed channel signal comprising a plurality of channel signals of different wavelengths. An optical amplifier may be coupled to receive, as an input/output, the multiplexed channel signals which amplifier may be a semiconductor optical amplifier (SOA) or a gain clamped-semiconductor optical amplifier (GC-SOA). A variable optical attenuator (VOA) is coupled to the optical amplifier and a chromatic dispersion compensator (CDC) is coupled to the variable optical attenuator. A mirror or Faraday rotator mirror (FRM) is coupled to the chromatic dispersion compensator to reflect the multiplexed channel signal back through optical components comprising the chromatic dispersion compensator, the variable optical attenuator and the optical amplifier so that the multiplexed channel signal is corrected partially for equalization and chromatic dispersion compensation with respect to each pass through these optical components. The E/CDC components may be integrated in a photonic integrated circuit (PIC) chip. In several embodiments, a photonic integrated circuit (PIC) chip comprises an input into the chip that receives at least one channel signal having experienced chromatic dispersion, a chromatic dispersion compensator (CDC) that separates the at least one channel signal into separate wavelength components over a free spectral range (FSR) spanning only a signal channel width and subjects the wavelength components to a phase shift to change the wavelength group delay in the wavelength components and that recombines the wavelength components to reconstitute the at least one channel signal, and an output from the chip for the recombined at least one channel signal having reduced chromatic dispersion compared to the same channel signal received at the chip input. The CDC device may include a tuning section to vary the phase shift of wavelength components as they propagate through the device. Such a CDC device may include a Mach-Zehnder interferometer (MZI) or a cascaded group of Mach-Zehnder interferometers, or at least one arrayed waveguide grating (AWG) or at least one Echelle grating.