摘要:
A method for producing an optoelectronic semiconductor component includes providing a first wafer having a patterned surface, wherein the patterned surface is formed at least in places by elevations having first and second heights, wherein the first height is greater than the second height; providing a second wafer; applying a photoresist to outer areas of the second wafer; patterning a surface of the photoresist facing away from the second wafer by impressing the patterned surface of the first wafer into the photoresist, wherein the elevations are impressed as trenches having a first and second depth into the photoresist; applying a patterning method to the patterned surface of the photoresist, wherein the structure applied on the photoresist is transferred at least in places to the outer area of the second wafer.
摘要:
A method for producing an optoelectronic semiconductor component includes providing a first wafer having a patterned surface, wherein the patterned surface is formed at least in places by elevations having first and second heights, wherein the first height is greater than the second height; providing a second wafer; applying a photoresist to outer areas of the second wafer; patterning a surface of the photoresist facing away from the second wafer by impressing the patterned surface of the first wafer into the photoresist, wherein the elevations are impressed as trenches having a first and second depth into the photoresist; applying a patterning method to the patterned surface of the photoresist, wherein the structure applied on the photoresist is transferred at least in places to the outer area of the second wafer.
摘要:
A method for patterning a semiconductor surface is specified. A photoresist is applied to an outer area of a second semiconductor wafer. A surface of the photoresist that is remote from the second semiconductor wafer is patterned by impressing a patterned surface of the first wafer into the photoresist. A patterning method is applied to the surface of the photoresist, wherein a structure applied on the photoresist is transferred at least in places to the outer area of the second semiconductor wafer.
摘要:
An optoelectronic component with a semiconductor body includes an active region suitable for generating radiation, and two electrical contacts arranged on the semiconductor body. The contacts are electrically connected to the active region. The contacts each have a connecting face that faces away from the semiconductor body. The contact faces are located on a connection side of the component and a side of the component that is different from the connection side is mirror-coated. A method for the manufacture of multiple components of this sort is also disclosed.
摘要:
An optoelectronic component with a semiconductor body includes an active region suitable for generating radiation, and two electrical contacts arranged on the semiconductor body. The contacts are electrically connected to the active region. The contacts each have a connecting face that faces away from the semiconductor body. The contact faces are located on a connection side of the component and a side of the component that is different from the connection side is mirror-coated. A method for the manufacture of multiple components of this sort is also disclosed.
摘要:
An optoelectronic component with a semiconductor body includes an active region suitable for generating radiation, and two electrical contacts arranged on the semiconductor body. The contacts are electrically connected to the active region. The contacts each have a connecting face that faces away from the semiconductor body. The contact faces are located on a connection side of the component and a side of the component that is different from the connection side is mirror-coated. A method for the manufacture of multiple components of this sort is also disclosed.
摘要:
A method is for activating or deactivating at least one part of data stored in a memory arrangement of a microcomputer system, in particular one part of a program stored there. In the event of a manipulation of data stored in the memory arrangement by unauthorized third parties, a method having the following method steps may prevent utilization of the manipulated data reliably and effectively:a microcomputer-individual identifier is stored in a signed or encoded fashion a specifiable memory area of the memory arrangement;when the microcomputer system is started up, the signature of the identifier is checked or the identifier is decoded; andas a function of the result of the identifier, one part of the data is activated or deactivated.
摘要:
A method of producing optoelectronic components is indicated, in which a plurality of semiconductor bodies, each with a semiconductor layer sequence, are provided. In addition, a component carrier assembly with a plurality of connection pads is provided. The semiconductor bodies are positioned relative to the component carrier assembly. An electrically conductive connection is produced between the connection pads and the associated semiconductor bodies and the semiconductor bodies are attached to the component carrier assembly. The optoelectronic components are finished in that one component carrier (30) is formed from the component carrier assembly, to which the semiconductor bodies are attached, for each optoelectronic component.
摘要:
A method is disclosed in which a base body is prepared that comprises a layer sequence intended for the LED chip and suitable for emitting electromagnetic radiation. A cap layer is applied to at least one main surface of the base body. A cavity is introduced into the cap layer and is completely or partially filled with a luminescence conversion material. The luminescence conversion material comprises at least one phosphor. A method is also disclosed in which the cap layer comprises photostructurable material and at least one phosphor, such that it is able to function as a luminescence conversion material and can be photostructured directly. LED chips that are producible by means of the method are also described.
摘要:
A method is disclosed in which a base body is prepared that comprises a layer sequence intended for the LED chip and suitable for emitting electromagnetic radiation. A cap layer is applied to at least one main surface of the base body. A cavity is introduced into the cap layer and is completely or partially filled with a luminescence conversion material. The luminescence conversion material comprises at least one phosphor. A method is also disclosed in which the cap layer comprises photostructurable material and at least one phosphor, such that it is able to function as a luminescence conversion material and can be photostructured directly. LED chips that are producible by means of the method are also described.