摘要:
The invention pertains to a method of manufacturing a photovoltaic foil comprising a TCO layer, a photovoltaic layer, and a back electrode, which method comprises the following steps: providing a conductive temporary substrate; applying a TCO layer on the temporary substrate; applying a photovoltaic layer on the TCO by means of electrodeposition, with the current during the electrodeposition being supplied at least through the temporary substrate; applying a back electrode; if so desired, applying a permanent substrate; removing the temporary substrate. The crux of the invention is that the unit of the conductive temporary substrate and the TCO functions as electrode during the electrodeposition of the photovoltaic layer. Because of this, the rate of deposition of the photovoltaic layer can be increased compared with that of the prior art. Furthermore, a photovoltaic layer with a more homogenous layer thickness is obtained.
摘要:
The invention pertains to a solar cell unit comprising a back electrode, a photovoltaic (PV) layer, and, optionally, a front electrode, with part of the surface of the solar cell unit not generating any energy, characterised in that on at least a portion of the part of the solar cell unit which does not generate any energy a colouring layer is present, while at least a portion of the energy generating part of the solar cell unit is free of a colouring layer. Preferably at least 50%, more preferably, at least 85%, more preferably still, at least 90% of the energy generating part of the solar cell unit is free of a colouring layer. The solar cell unit may be either a wafer-based solar cell unit or a thin film solar cell unit. The colouring layer may be applied on, e.g., the optionally present grid and/or in the case of thin film solar cell units on the part of the surface of the solar cell unit which does not generate any energy as a result of the connection in series.The solar cell unit preferably is made by means of a process where the application of the colouring layer is integrated into the process.The invention provides a coloured solar cell unit where the application of the colour need not be at the expense of the solar cell unit's output.
摘要:
A process for manufacturing a multi-layer printed wire board, also referred to as a multilayer, comprising at least two electrically insulating substrates with electrically conductive traces or layers provided on at least three surfaces thereof, in which process, by means of lamination under pressure, a cured basic substrate based on a UD-reinforced synthetic material, provided on either side with traces, is combined with and bonded to a back-up substrate, wherein during the laminating process the back-up substrate is added to the basic substrate, the back-up substrate comprising a UD-reinforced cured core layer provided at least on the side facing the conducting traces of the basic substrate with a still plastically deformable (flowable) adhesive layer, and such a pressure is exerted on the laminate as to bring said cured core layer of the back-up substrate into contact or practically into contact with the conducting traces of the basic substrate, and the space between these traces is filled with the adhesive material, so bonding the basic substrate and the back-up substrate.
摘要:
A process for manufacturing a multi-layer printed wire board, also referred to as a multilayer, comprising at least two electrically insulating substrates with electrically conductive traces or layers provided on at least three surfaces thereof, in which process, by means of lamination under pressure, a cured basic substrate based on a UD-reinforced synthetic material, provided on either side with traces, is combined with and bonded to a back-up substrate, wherein during the laminating process the back-up substrate is added to the basic substrate, the base substrate and the back-up substrate comprising a UD-reinforced cured core layer, the base substrate having been provided at least on the side facing the back-up substrate with a still plastically deformable (flowable) adhesive layer, and such a pressure is exerted on the laminate as to bring said back-up substrate into contact or practically into contact with the conducting traces of the basic substrate, and the space between these traces is filled with the adhesive material, so bonding the basic substrate and the back-up substrate.
摘要:
A laminate, adapted to be used as a supporting board for a printed circuit, is disclosed which comprises layers of an electrically non-conductive matrix material reinforced with unidirectionally (UD) oriented fibers with the layers comprising individual matrix material having different directions of orientation. The layers are stacked to form a laminate of crossing layers, and the laminate has a core plane relative to which the crossing layers are in mirror image relationship so that the laminate has orthotropic properties. The laminate comprises layers of adhesive material present at least between any pair of layers of UD-reinforced matrix material having different directions of orientation.
摘要:
The invention pertains to a method of making a photovoltaic cell at least comprising the following layers in the following order: a first electrode layer, a transparent wide band gap semiconductor layer provided with a layer of a photosensitising dye or pigment which in combination with the semiconductor layer has the ability to spatially separate photogenerated electrons from their positive countercharges, a layer of an electrolyte, a catalyst layer, and a second electrode layer. The method is characterized in that the first electrode layer and the semiconductor layer and/or the second electrode layer and the catalyst layer are deposited on a flexible temporary substrate that is removed later on. The electrode or electrodes, which are deposited on the temporary substrate, are transparent. The invention allows the roll-to-roll manufacture of said photovoltaic cell while providing great freedom in selecting the processing conditions.
摘要:
A hybrid roof covering element, which suitable for simultaneously heating a medium and generating electricity, and which comprises a single or multiple transparent layer, a flexible thin film solar cell sheet with a heat capacity of less than 3.5 kJ/m2K and a thermally insulating material, and a medium to be heated. The flexible thin film solar cell sheet comprises a carrier, a back electrode, a photovoltaic layer, and a transparent conductive front electrode and has a heat capacity of less than 3.5 kJ/m2K. This hybrid roof covering element has a response speed of more than 5.7·10−4 K/J if the medium to be heated is air and a response speed of more than 1·10−4 K/J if the medium to be heated is water.
摘要翻译:一种适用于同时加热介质并发电的混合屋顶覆盖元件,其包括单个或多个透明层,热容量小于3.5kJ / m2K的柔性薄膜太阳能电池片和绝热材料 ,和待加热的介质。 柔性薄膜太阳能电池片包括载体,背电极,光电层和透明导电前电极,并且具有小于3.5kJ / m 2·K的热容。 如果要加热的介质为空气,并且待加热介质为水时,响应速度大于1.10-4 K / J,则该混合屋顶覆盖件的响应速度大于5.7.10-4 K / J。
摘要:
The invention pertains to a method of manufacturing a photovoltaic foil supported by a carrier and comprising a plurality of photovoltaic layers which together have the ability of generating electric current from incident light, a back-electrode layer on one side adjacent and parallel to the photovoltaic layers, and a transparent conductor layer on the other side of, and adjacent and parallel to the photovoltaic layers, which method comprises the following subsequent steps: providing a temporary substrate, applying the transparent conductor layer, applying the photovoltaic layers, applying the back-electrode layer, applying the carrier, removing the temporary substrate, and, preferably, applying a top coat on the side of the transparent conductor layer. The invention enables the roll-to-roll manufacture of a tough photovoltaic foil or device, while at the same time making it possible to use any desired transparent conductor material and deposition process, without jeopardizing the current-generating action of the PV layers.
摘要:
A method for the manufacture in a continuous process of a flat substrate from a fibres-reinforced matrix for a printed circuit, in which use is made of at least two moving layers of reinforcing fibres and the fibres are positioned in at least two crossing directions, whereupon the filaments layers provided with matrix material, optionally together with one or more electrical conducting layers, such as a metal foil, and/or insulating layers on one or on either outer side, are passed through a preferably heated laminating zone, such as a double belt press, characterized in that use is made of filaments-containing layers made up of a plurality of mutually parallel filaments that are not bonded in the form of a fabric and extend substantially linearly.
摘要:
The present invention relates to a hydrogen fed power system comprising: a high-pressure hydrogen container (150), at least one hydrogen driven energy converter such as a fuel cell (159) connecting to the hydrogen container (150), pressure converter (158) for hydrogen gas, located between the high-pressure hydrogen container (150) and the lower pressure energy converter (159). The invention also relates to a vehicle as well as to a stand-alone electric power unit provided with such an hydrogen fed power system. Furthermore the present invention relates a method for use of the hydrogen fed power system and to a method for filling up the high-pressure hydrogen container of the hydrogen fed power system.