Abstract:
A method for modifying the surface of a material adapted for contact with tissue of a human or non-human animal to impart biofunctional, bioactive or biomimetic properties to the surface comprising: (a) exposing the surface to a solution comprising (1) an ethylenically unsaturated monomer or mixture thereof capable, via the ethylenic unsaturation, of gamma irradiation or electron beam induced polymerization, and (2) at least one biofunctional agent; and (b) irradiating the surface with gamma or electron beam irradiation in the presence of the solution to thereby form on the surface a graft polymerized coating, the coating having physically entrapped therein or chemically bonded thereto molecules of the at least one biofunctional agent which imparts biofunctional or biomimetic properties to the surface; wherein the gamma or electron beam irradiation induced polymerization is conducted under one of the following conditions: A. (i) monomer concentration in the solution in the range of from about 0.1% to about 50%, by weight; (ii) total gamma or electron beam dose in the range of from about 0.001 to less than about 0.50 Mrad; and (iii) gamma dose rate in the range of from about 10 to about 2,500 rads/min., or electron beam dose rate in the range of from about 10 to about 108 rads/min.; B. (i) hydrophilic monomer(s) graft under conditions which may include monomer pre-soak or plasma gamma surface modification (especially for metal or glass substrates in latter case); and (ii) graft polymerization of monomer(s) with bioactive/biofunctional molecules using (i) as substrate; C. (i) Hydrograft™ as in A or B above followed by dehydration and adsorption of bioactive/biofunctional molecules into the hydrophilic polymer graft; wherein the biological properties of the biofunctional agent are substantially maintained.
Abstract:
A method for modifying the plastic surface of an article adapted for contacting living tissue by the gamma or electron beam irradiation induced chemical graft coating thereon of:(1) a neutral or ionic water-soluble, hydrophilic vinylic monomer or salt thereof;(2) a mixture of at least two of said monomers, or(3) a mixture of (1) or (2) with up to about 50%, by weight, based on the total monomer weight, of a member selected from the group consisting of N-vinylpyrrolidone, 2-hydroxyethyl-methacrylate, and mixtures thereof; so as to form a hydrophilic graft polymer coating on the surface.
Abstract:
A material consisting of a hydrophobic material having a metallic, ceramic or glass surface which has been modified by exposing the surface to a glow discharge plasma to activate the surface, followed by exposing the activated surface to one or more ethylenically unsaturated monomers and irradiating the surface with gamma or electron beam radiation to induce polymerization thereon of the monomer(s) so as to form a hydrophilic polymeric coating on the surface of an article.
Abstract:
An improved method for modifying the surface of an ocular implant material by the gamma or electron beam irradiation induced chemical graft coating thereon of a monomer comprising N-vinly-pyrrolidone, 2-hydroxyethylmethacrylate or a mixture of the two to form a hydrophilic graft polymer coating, the improvement comprising pre-soaking the ocular implant material in a monomer or a solution comprising a monomer prior to conducting the gamma- or electron beam-irradiation induced graft polymerization in a second solution of a monomer.
Abstract:
A method for modifying an ocular implant polymer surface by the gamma-irradiation or electron beam irradiation induced polymerization thereon of N-vinylpyrrolidone, 2-hydroxyethylmethacrylate or a mixture thereof while maintaining the following conditions:(a) monomer concentration in the range of from about 0.1% to about 50%, by weight;(b) total gamma dose in the range of from about 0.001 to less than about 0.50 Mrad; and(c) gamma dose rate in the range of from about 10 to about 2500 rads/minute or electron beam irradiation dose rate in the range of from about 10 to about 10.sup.8 rads/minute.
Abstract:
Improved medical devices and instruments prepared by an improved method of producing hydrophilic, gamma-irradiation or electron beam-irradiation induced polymerized and chemically grafted coatings or plastic surfaces of articles adapted for contacting living tissue,the improvement comprising carrying out the graft polymerization in an aqueous solution under specific combinations of the following conditions:1) monomer concentration in the range of from about 0.1% to about 50%, by weight;2) total gamma or electron beam irradiation dose in the range of from about 0.001 to less than about 0.50 Mrad; and3) gamma dose rate in the range of from about 10 to about 2500 rads/min or electron beam-irradiation dose rate in the range of from about 10 to about 10.sup.8 rads/min.
Abstract:
Improved medical devices and instruments prepared by an improved method of producing hydrophilic, gamma irradiation induced polymerized and chemically grafted coatings or plastic surfaces of articles adapted for contacting living tissue, the improvement comprising carrying out the graft polymerization in an aqueous solution under specific combinations of the following conditions:(1) monomer concentration in the range of from about 0.5% to about 50%, by weight;(2) total gamma dose in the range of from about 0.01 to less than about 0.50 Mrad;(3) gamma dose rate in the range of from about 10 to about 2500 rads/min; and(4) maintaining the molecular weight of the polymer in solution in the range of from about 250,000 to about 5,000,000.
Abstract:
A method for modifying the surface of a material by:a. exposing the surface to a glow discharge plasma to activate the surface;b. exposing the surface to an ethylenically unsaturated monomer or mixture of monomers; andc. irradiating the activated surface with gamma radiation or electron beam radiation in the presence of the ethylenically unsaturated monomer to form a graft polymerized coating thereon.
Abstract:
An absorbent article has a longitudinal direction, a transverse direction, a first major surface which forms a body-facing surface of the absorbent article, and a second major surface disposed distally from the first major surface which forms a garment-facing surface of the absorbent article. The article includes an absorbent core positioned between the first major surface and the second major surface. The article also includes at least one heat-activatable expandable structure. The at least one heat-activatable expandable structure is disposed on or below the first major surface. Application of heat to the heat-activatable expandable structure causes the heat-activatable expandable barrier structure to form distinctive designs, barriers and/or channels.
Abstract:
An oxidizing anti-microbial treatment and products containing such treatment are described. The treatment involves, in part, preparing a substrate to accept an attachment of charged moieties, and a number of stabilized peroxide compounds on at least part of a surface of said substrate. When microbes, such as bacteria, having a net charge opposite to that of the charged moieties come in close proximity to the treated substrate surface, peroxide molecules from the substrate are activated and released to kill the microbes.