Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to scaled memory structures with middle of the line cuts and methods of manufacture The structure comprises: a plurality of fin structures formed on a substrate; a plurality of gate structures spanning over adjacent fin structures; a cut in adjacent epitaxial source/drain regions; and a cut in contact material formed adjacent to the plurality of gate structures, which provides separate contacts.
Abstract:
A non-planar Schottky diode includes a semiconductor substrate of a first type, the first type including one of n-type and p-type. The structure further includes raised semiconductor structure(s) of a second type opposite the first type coupled to the substrate, isolation material surrounding a lower portion of the raised structure(s), a first well of the second type directly under the raised structure(s), a guard ring of the first type around an edge of a top portion of the first well, a conformal layer of silicide over a top portion of the raised structure(s) above the isolation material, and a common contact above the conformal layer of silicide. The non-planar Schottky diode can be fabricated with non-planar transistors, e.g., FinFETs.
Abstract:
A non-planar lateral drift MOS device eliminates the need for a field plate extension, which reduces gate width. In one example, two sources and two comparatively small gates in a raised structure allow for two channels and a dual current with mirrored flows, each traveling into and downward through a center region of a connecting well that connects the substrate with the drain areas and shallow wells containing the source areas, the current then traveling in opposite directions within the substrate region of the connecting well toward the two drains. The source and drain areas may be separate raised structures or isolated areas of a continuous raised structure.
Abstract:
A method of manufacturing a vertical fin field effect transistor includes forming a first fin in a first device region of a substrate, forming a second fin in a second device region of the substrate, and forming a sacrificial gate having a first gate length adjacent to the first and second fins. After forming a block mask over the sacrificial gate within the first device region, a deposition step or an etching step is used to increase or decrease the gate length of the sacrificial gate within the second device region. Top source/drain junctions formed over the fins are self-aligned to the gate in each of the first and second device regions.
Abstract:
A vertical SRAM cell includes a first (1st) inverter having a 1st pull-up (PU) transistor and a 1st pull-down (PD) transistor. The 1st PU and 1st PD transistors have a bottom source/drain (S/D) region disposed on a substrate and a channel extending upwards from a top surface of the bottom S/D region. A second (2nd) inverter has a 2nd PU transistor and a 2nd PD transistor. The 2nd PU and 2nd PD transistors have a bottom S/D region disposed on the substrate and a channel extending upwards from a top surface of the bottom S/D region. A 1st metal contact is disposed on sidewalls, and not on the top surface, of the bottom S/D regions of the 1st PU and 1st PD transistors. A 2nd metal contact is disposed on sidewalls, and not on the top surface, of the bottom S/D regions of the 2nd PU and 2nd PD transistors.
Abstract:
A non-planar semiconductor structure includes a semiconductor substrate, multiple raised semiconductor structures coupled to the substrate, a drain well in each of the raised structures, and a drain in each drain well. The structure further includes an isolation region in each drain well adjacent the drain, each isolation region reaching to a top surface of the corresponding raised structure, and a conductive center gate on each raised structure, the conductive center gate covering a top surface, a front surface and a back surface thereof, and covering a portion of the isolation region opposite the drain. The isolation regions in the drain wells reaching to the raised structure top surface is a result of preserving the isolation region by covering it during fabrication with an HDP oxide to prevent partial removal.