Abstract:
Methods of reducing the SC GH on a FinFET device while protecting the LC devices and the resulting devices are provided. Embodiments include forming an ILD over a substrate of a FinFET device, the ILD having a SC region and a LC region; forming a SC gate and a LC gate within the SC and LC regions, respectively, an upper surface of the SC and LC gates being substantially coplanar with an upper surface of the ILD; forming a lithography stack over the LC region; recessing the SC gate; stripping the lithography stack; forming a SiN cap layer over the SC and LC regions; forming a TEOS layer over the SiN cap layer; and planarizing the TEOS layer.
Abstract:
Methods of facilitating isolation region uniformity include: patterning a semiconductor substrate to form at least one isolation opening within the semiconductor substrate, the patterning comprising leaving, at least in part, a protective hard mask above a portion of the semiconductor substrate; providing an insulating material within and over the at least one isolation opening, and planarizing the insulating material to facilitate fabricating an isolation region within the semiconductor substrate; stopping the planarizing on the protective hard mask and exposing at least a portion of the protective hard mask above the portion of the semiconductor substrate; and non-selectively removing a remaining portion of the insulating material over the at least one isolation opening and the exposed protective hard mask above the portion of the semiconductor substrate while leaving the insulating material within the at least one isolation opening and exposing upper surfaces of the semiconductor substrate, to facilitate isolation region uniformity.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to scaled memory structures with middle of the line cuts and methods of manufacture The structure comprises: a plurality of fin structures formed on a substrate; a plurality of gate structures spanning over adjacent fin structures; a cut in adjacent epitaxial source/drain regions; and a cut in contact material formed adjacent to the plurality of gate structures, which provides separate contacts.
Abstract:
Semiconductor devices and fabrication methods are provided having an isolation feature within a fin structure which, for instance, facilitates isolating circuit elements supported by the fin structure. The fabrication method includes, for instance, providing an isolation material disposed, in part, within the fin structure, the isolation material being formed to include a T-shaped isolation region and a first portion extending into the fin structure, and a second portion disposed over the first portion and extending above the fin structure.
Abstract:
The use of two different materials for shallow trench isolation and deep structural trenches with a dielectric material therein (e.g., flowable oxide and a HARP oxide, respectively) causes non-uniform heights of exposed portions of raised semiconductor structures for non-planar semiconductor devices, due to the different etch rates of the materials. Non-uniform openings adjacent the exposed portions of the raised structures from recessing the isolation and dielectric materials are filled with additional dielectric material to create a uniform top layer of one material (the dielectric material), which can then be uniformly recessed to expose uniform portions of the raised structures.
Abstract:
A method of manufacturing a semiconductor device includes the formation of an oxide spacer layer to modify the critical dimension of a gate cut opening in connection with a replacement metal gate process. The oxide spacer layer is deposited after etching a gate cut opening in an overlying hard mask such that the oxide spacer layer is deposited onto sidewall surfaces of the hard mask within the opening and directly over the top surface of a sacrificial gate. The oxide spacer may also be deposited into recessed regions within an interlayer dielectric located adjacent to the sacrificial gate. By filling the recessed regions with an oxide, the opening of trenches through the oxide spacer layer and the interlayer dielectric to expose source/drain junctions can be simplified.
Abstract:
A method of manufacturing a FinFET structure involves forming gate cuts within a sacrificial gate layer prior to patterning and etching the sacrificial gate layer to form longitudinal sacrificial gate structures. By forming transverse cuts in the sacrificial gate layer before defining the sacrificial gate structures longitudinally, dimensional precision of the gate cuts at lower critical dimensions can be improved.
Abstract:
Methods to reduce a width of a channel region of Si fins and the resulting devices are disclosed. Embodiments include forming a Si fin in a Si layer; forming a channel region over the Si fin including a dummy gate with a spacer on each side; forming S/D regions at opposite ends of the Si fin; removing the dummy gate, forming a cavity; thinning sidewalls of the Si fin; and forming a high-k/metal gate in the cavity.
Abstract:
A method can include performing an etching process to define a fin trench having a first depth, the first depth being less that a target height of fin. A method can also include forming a layer to protect sidewalls defining the fin trench. A method can also include performing a second etching process to increase a depth of fin trench.
Abstract:
There is set forth herein in one embodiment a semiconductor structure having a first region and a second region. The first region can include fins of a first fin height and the second region can include fins of a second fin height.