摘要:
A surface acoustic wave sensor system in which a predetermined level of coupling between two surface acoustic wave arrays is intentionally provided in order to couple radio frequency energy from one into the other and thereby, in cooperative effect with attendant oscillator circuits and a filter, results in the development of a difference frequency which is a function of the sensed condition.
摘要:
This is an integral IR detector system with at least two epitaxial HgCdTe sensors on integrated silicon or GaAs circuitry and also a method of fabricating such system. The system can comprise: a) integrated silicon or GaAs circuitry 110; b) an epitaxial lattice-match layer (e.g. ZnSe 114) on a top surface of the circuit; c) an epitaxial insulating layer (e.g. CdTe 102) on the lattice-match layer; and d) at least two epitaxial HgCdTe sensors 101,121 on the insulating layer, with the HgCdTe sensors being electrically connected to the circuitry. Preferably, the circuitry is silicon. Preferably, an IR transparent, spacer layer (e.g. CdTe 120 or CdZnTe) is on the HgCdTe sensors and an HgCdTe filter 122 is on the spacer layer. Preferably, at least one of the HgCdTe sensors and the HgCdTe filter is laterally continuously graded.
摘要:
A multiple film integrated infrared (IR) detector assembly 85 consists of detector films 86, 88, 90 having different IR spectral sensitivities which are deposited on a breadboard IR transmissive but electrically insulating substrate 42. Substrate 42 is deposited on an IR filter layer comprising an HgCdTe film 70. By various techniques described, filter film 70 has a varying composition from edge 68 to 72. This compositional gradient of film 70 results in varying IR spectral absorption as shown by IR transmission graphs 10, 12, 14. Film 70 acts as a graded IR filter in concert with the response of the detector films 86, 88, 90. By the proper choice of the compositional gradients in these films, and as a result the IR spectral response, an integrated IR spectrometer may be fabricated whereby each detector 86, 87, 90 detects only specific narrow bands of IR wavelengths.
摘要:
The disclosure relates to a method of purifying cadmium and tellurium and forming pure, stoichiometric cadmium telluride therefrom as well as the apparatus for making such cadmium telluride. The cadmium and tellurium are purified by heating each separately to volatilization and passing water in a reducing gas through the volatilized cadmium and tellurium to react with impurities and form gases or precipitates. The cadmium and tellurium are volatilized at different predetermined temperatures such that the amount of each volatilized will be the same so that reaction later takes place with stoichiometric amounts of the elements to form the cadmium telluride. The cadmium telluride is then condensed at low enough temperature so that the remaining gases pass out of the system.
摘要:
This is an integral IR detector system with at least two epitaxial HgCdTe sensors on integrated silicon or GaAs circuitry and also a method of fabricating such system. The system can comprise: a) integrated silicon or GaAs circuitry 110; b) an epitaxial lattice-match layer (e.g. ZnSe 114) on a top surface of the circuit; c) an epitaxial insulating layer (e.g. CdTe 102) on the lattice-match layer; and d) at least two epitaxial HgCdTe sensors 101,121 on the insulating layer, with the HgCdTe sensors being electrically connected to the circuitry. Preferably, the circuitry is silicon. Preferably, an IR transparent, spacer layer (e.g. CdTe 120 or CdZnTe) is on the HgCdTe sensors and an HgCdTe filter 122 is on the spacer layer. Preferably, at least one of the HgCdTe sensors and the HgCdTe filter is laterally continuously graded.
摘要:
Methods are described for the depositing of a plurality of films, preferably mercury cadmium telluride (HgCdTe), whose compositions vary in a controlled manner to provide unique infrared spectral absorption and detection properties. HgCdTe films 64 and 70 are deposited on opposite sides of electrically insulating, IR transmissive film 42. Initially these HgCdTe films may be of uniform composition laterally from 62 to 66 and 68 to 72. However the interdiffusion and segregation coefficients of Hg and Cd are different and vary differently with respect to temperature. By placing film 70 in contact with heater 9, a controlled lateral gradient in composition of the film may be effected because 44 is hotter than 45 and will produce higher Cd concentration at 68 than 72. Similarly 62 will be higher in Cd than 66, however, the gradient will be much less because 64 is cooler than 70. Through the use of a heater 60, the lateral compositional gradient of 64 may be varied with respect to film 70. The close tracking of the IR properties of 70 and 64 can provide useful and novel integrated IR devices such as multiple band spectrometers.
摘要:
A method and apparatus are provided for holding and positioning objects for a single diamond point turning operation. The objects which may include liquid phase epitaxy films are mounted on multiple platforms (10, 46). The platforms (10, 46) are securely connected to a base (20). The platforms (10, 46) are positioned, independently from one another, for elevation and orientation relative to the base (20) while the platforms (10, 46) are securely connected to the base (20).
摘要:
The problem of CdTe sticking to quartz boats is avoided by preventing any presence of cadmium oxides in the as-compounded CdTe. This is accomplished by distilling the cadmium under a high vacuum immediately prior to the CdTe compounding step.
摘要:
This is a sensor for, and a method of, determining if a particular type of flame is present, using at least two uncooled HgCdTe detector films on a common IR transmissive substrate. Specific examples of the types of radiation which can be identified include gasoline flames, natural gas flames, and organic combustion flames (identified, e.g., by comparing the amount of combined carbon dioxide and carbon monoxide to the amount of water vapor). The ratio of carbon dioxide to carbon monoxide can also be determined. The sensor can include a first HgCdTe filter (88) on a common IR transmissive substrate (42), a first uncooled HgCdTe detector film (86) over the first filter (88), and a second uncooled HgCdTe detector film (92) on a CdTe insulator which is either on the first uncooled HgCdTe detector film, or on a second HgCdTe filter (94) provided on the common IR transmissive substrate.
摘要:
A method is provided for producing an n-type or p-type epitaxial layer using a doped substrate material. The method includes growing a substrate (12), preferably from a material to which an epitaxial layer can be lattice-matched. The substrate (12) is doped with a predetermined concentration of dopant (14). Preferably, the dopant (14) possesses the ability to rapidly diffuse through a material. An epitaxial layer (16) is grown upon the doped substrate (12). The epitaxial layer (16) and the doped substrate are annealed, thereby causing the dopant (14) to diffuse from the substrate (14) into the epitaxial layer (16).