摘要:
A radiation source has a field of semiconductor chips, which are disposed below a field of micro-lenses (8) disposed in a hexagonal lattice structure. The radiation source is distinguished by high radiation output and radiation density.
摘要:
A method for producing a lens mold suitable for manufacturing a field of micro-lenses is disclosed. The method includes the step of molding the lens mold from a sheaf of closely-packed balls held by a hexagonal mounting.
摘要:
An apparatus having a least one fixing element is specified, the fixing element being provided for fixing the apparatus to a housing body of an optoelectronic device and the apparatus being designed as a mount for a separate optical element.
摘要:
The invention relates to an optoelectronic component containing an optoelectronic chip (1) and containing a chip carrier (2) that has a central region (3) on which the chip is fixed and that comprises terminals (41, 42, 43, 44) extending outwardly from the central region of the chip carrier (2) to the outside, wherein the chip and portions of the chip carrier are enveloped by a body (5) and wherein the projection of the body and that of each of the longitudinal axes of the terminals onto the contact plane between the chip and the chip carrier are substantially point-symmetrical with respect to the central point of the chip. The invention further relates to an arrangement comprising said component. The advantage of the symmetrical configuration of the component is that the risk of thermomechanically induced failures of the component is reduced.
摘要:
The invention describes two methods of fabricating semiconductor components in which a luminescence conversion element is applied directly to the semiconductor body (1). In the first method, a suspension (4) containing a bonding agent and at least one luminescent material (5) is applied to the semiconductor body (1) in layers. In the next step the solvent escapes, leaving only the luminescent material (5) with the bonding agent on the semiconductor body.In the second method, the semiconductor body (1) is provided with a layer (6) of bonding agent to which the luminescent material (5) is applied directly.
摘要:
Disclosed is a radiation emitting and/or receiving semiconductor component comprising at least one radiation emitting and/or receiving semiconductor chip (1), which is disposed in a recess (2) of a housing base body (3) and is there encapsulated with an encapsulant (4) that is readily transparent to electromagnetic radiation emitted and/or received by the semiconductor chip (1). The recess (2) comprises a chip well (21) in which the semiconductor chip (1) is secured, and a trench (22) that runs at least partway around the chip well (21) inside the recess (2), such that between the chip well (21) and the trench (22) the housing base body (3) comprises a wall (23) whose apex, viewed from a bottom face of the chip well (21), lies below the level of the surface of the housing base body (3) from which the recess (2) leads into the housing base body (3), and the encapsulant (4) extends outward from the chip well (21) over the wall into the trench (22). A corresponding housing base body is also disclosed.
摘要:
Presented is a method for simultaneously producing a multiplicity of surface-mountable semiconductor components each having at least one semiconductor chip, at least two external electrical connections, which are electrically conductively connected to at least two electrical contacts of the semiconductor chip, and an encapsulation material.
摘要:
An optoelectronic component having a basic housing or frame and at least one semiconductor chip, specifically a radiation-emitting or -receiving semiconductor chip, in a cavity of the basic housing. In order to increase the efficiency of the optoelectronic component, reflectors are provided in the cavity in the region around the semiconductor chip. These reflectors are formed by virtue of the fact that a filling compound filled at least partly into the cavity is provided, the material and the quantity of the filling compound being chosen in such a way that the filling compound, on account of the adhesion force between the filling compound and the basic housing, assumes a form which widens essentially conically from bottom to top in the cavity, and the conical inner areas of the filling compound serve as reflector.
摘要:
A housing for an optoelectronic component which includes a carrier with a chip mounting surface is disclosed. An optical element which is produced separately from the carrier is applied to the carrier. The chip mounting surface and the optical element define a parting plane, the parting plane between carrier and optical element being arranged in the plane of the chip mounting surface. Also disclosed is an optoelectronic component having a housing of this type and a method for producing an optoelectronic component of this type.
摘要:
A leadframe, a housing, a radiation-emitting component formed therefrom, and a method for producing the component includes the leadframe having a mount part with at least one bonding wire connecting area and at least one electrical solder connecting strip into which a separately manufactured thermal connecting part, which has a chip mounting area, is linked. To form a housing, the leadframe is sheathed, preferably, with a molding compound, with the thermal connecting part being embedded such that it can be thermally connected from the outside.