摘要:
A process for manufacturing of a field emission device (100, 200) including the steps of i) providing a substrate (101, 201), ii) forming a conductive row (106, 206), ii) forming a dielectric layer (102, 202), iv) forming a resist layer (116, 216), v) forming a self-assembled monolayer (112, 212) of a self-assembled monolayer-forming molecular species on the resist layer (116, 216) so that the self-assembled monolayer (112, 212) defines an etch pattern for an emitter well (107, 207), vi) etching the resist layer (116, 216), vii) etching the dielectric layer ((102, 202), viii) forming conductive column (103, 203), and ix) forming the electron-emitter structure (105, 208) within the emitter well (107, 207).
摘要:
An apparatus (95) and method for patterning a surface of an article (30), the apparatus (95) including a large-area stamp (50) for forming a self-assembled monolayer (36) (SAM) of a molecular species (38) on the surface (34) of a layer (32) of resist material, which is formed on the surface of the article (30). The large-area stamp (50) includes a layer (52) of an elastomer and has, embedded within it, mechanical structures (68, 80) which stiffen the large-area stamp (50) and deform it to control the stamped patterns. The method includes the steps of: forming a layer (32) of resist material is on the surface of the article (30), utilizing the large-area stamp (50) to form the SAM (36) on the surface (34) of the layer (32) of resist material, etching the layer (32) of resist material, and thereafter etching or plating the surface of the article (30).
摘要:
An apparatus (100) including a support structure (104), a flexible stamp (106) having a stamping surface (110) including a predetermined pattern disposed opposite the support structure (104), a pressure controlled chamber (112) disposed above the support structure (104), and a mechanical attachment (114) affixed to the flexible stamp (106). A method is provided for stamping the surface (101) of an article (102) including the steps of i) placing the article (102) on the support structure (104) within the pressure-controlled chamber (112), ii) wetting the stamping surface (110) with a solution containing a self-assembled monolayer-forming molecular species, iii) aligning alignment patterns (118) on the flexible stamp (106) with alignment patterns (124) on the surface (101) of the article (102), iv) controllably contacting the wetted stamping surface (110) with the surface (101) of the article (102) by changing the pressure differential across the flexible stamp (106) so that contact commences at the center of the flexible stamp (106) and proceeds outwardly in a controlled manner, and v) removing the stamping surface (110) from the surface (101) of the article so that a self-assembled monolayer (134) having the predetermined pattern is formed on the surface (101) of the article (102).
摘要:
A heterostructure electron emitter including a substrate having a surface with a predetermined potential barrier and a quantum well formed in the substrate adjacent the surface. Contacts are positioned on the substrate for coupling free electrons to the substrate and into the quantum well. An acoustic wave device is positioned on the substrate so as to direct acoustic waves to strike the free electrons in the quantum well and excite the free electrons sufficiently to cause the free electrons to overcome the potential barrier and to be emitted from the surface of the substrate.
摘要:
An optical correction layer for a light emitting apparatus having gaps in brightness at the light-emitting surface. The optical correction layer includes a plurality of optical correction regions centered over the gaps, and a plurality of optically transparent regions which overlay the remainder of the light-emitting surface. The optical correction regions include appropriately formed grooves which collect and redirect light adjacent the gap. The light is redirected to cover and effectively conceal the gap. The optically transparent regions permit light to travel through, without redirection.
摘要:
A field emissive display (40) having an anode plate (10) coupled to a cathode plate (20) and a method for manufacturing the field emissive display (40). A substrate (21) of the cathode plate (20) is manufactured or selected such that its coefficient of thermal expansion substantially matches that of the anode plate (10), i.e., the coefficients of thermal expansion of the cathode plate (20) and the anode plate (10) are within ten percent of each other. The cathode plate (20) is coupled to the anode plate (10) by means of a frit structure (41) whose coefficient of thermal expansion preferably substantially matches that of the cathode plate (20) and the anode plate (10). A control circuit can be mounted to the bottom surface of the field emissive display (40).
摘要:
A field emission display (100, 200, 300) includes a plurality of offset phosphors (126) and a cathode plate (110). Cathode plate (110) has a plurality of non-electron-emissive structures (112), a plurality of electron-emissive pixels (108), and a plurality of focusing electrodes (106). Offset phosphors (126) are aligned one each with non-electron-emissive structures (112) of cathode plate (110). Focusing electrodes (106) are disposed to cause a plurality of emission currents (134), which are generated by electron-emissive pixels (108), to be directed one each toward offset phosphors (126). Ions liberated from offset phosphors (126) are received by non-electron-emissive structures (112) of cathode plate (110), thereby ameliorating ion bombardment of electron-emissive pixels (108).
摘要:
A an electron source utilizes a novel extraction grid conductor (20,40,41) to assist in focusing an electron beam emitted by the electron source. The extraction grid conductor (20,40,41) has a collimating conductor (29,31) that separate an extraction grid section (17,21,22) of the extraction grid conductor from conducting strips (26,24,32,33) that electrically connect the extraction grid section (17,21,22) to an external voltage source. The collimating conductor (29,31) creates an electric field that prevents emitted electrons from being attracted to the conducting strips (26,24,32,33) thereby maintaining the emitted electron beam in a substantially column-like configuration.
摘要:
A crystal is mounted on a low, centrally located pedestal. Connections to the lower side of the crystal are made by way of conductive areas on the pedestal. Multiple wiring connections are made at the edges of the crystal by allowing the bonding tool to depress the edge of the crystal so that the crystal bonding pad is supported by the base structure only during the bonding process, then released thereafter to allow free vibration of the crystal plate. Complex circuitry, possibly involving more than one frequency can thus be put onto one plate.
摘要:
A field emissive display (40) having an anode plate (10) coupled to a cathode plate (20) and a method for manufacturing the field emissive display (40). A substrate (21) of the cathode plate (20) is manufactured or selected such that its coefficient of thermal expansion substantially matches that of the anode plate (10), i.e., the coefficients of thermal expansion of the cathode plate (20) and the anode plate (10) are within ten percent of each other. The cathode plate (20) is coupled to the anode plate (10) by means of a frit structure (41) whose coefficient of thermal expansion preferably substantially matches that of the cathode plate (20) and the anode plate (10). A control circuit can be mounted to the bottom surface of the field emissive display (40).