摘要:
A crystal foundation having dislocations is used to obtain a crystal film of low dislocation density, a crystal substrate, and a semiconductor device. One side of a growth substrate (11) is provided with a crystal layer (13) with a buffer layer (12) in between. The crystal layer (13) has spaces (13a), (13b) in an end of each threading dislocation D1 elongating from below. The threading dislocation D1 is separated from the upper layer by the spaces (13a), (13b), so that each threading dislocation D1 is blocked from propagating to the upper layer. When the displacement of the threading dislocation D1 expressed by Burgers vector is preserved to develop another dislocation, the spaces (13a), (13b) vary the direction of its displacement. As a result, the upper layer above the spaces (13a), (13b) turns crystalline with a low dislocation density.
摘要:
A semiconductor light emitting element, manufacturing method thereof, integrated semiconductor light emitting device, manufacturing method thereof, illuminating device, and manufacturing method thereof are provided.An n-type GaN layer is grown on a sapphire substrate, and a growth mask of SiN, for example, is formed thereon. On the n-type GaN layer exposed through an opening in the growth mask, a six-sided steeple-shaped n-type GaN layer is selectively grown, which has inclined crystal planes each composed of a plurality of crystal planes inclined from the major surface of the sapphire substrate by different angles of inclination to exhibit a convex plane as a whole. On the n-type GaN layer, an active layer and a p-type GaN layer are grown to make a light emitting element structure. Thereafter, a p-side electrode and an n-side electrode are formed.
摘要:
Semiconductor light-emitting devices are provided. The semiconductor light-emitting devices include a substrate and a crystal layer selectively grown thereon at least a portion of the crystal layer is oriented along a plane that slants to or diagonally intersect a principal plane of orientation associated with the substrate thereby for example, enhancing crystal properties, preventing threading dislocations, and facilitating device miniaturization and separation during manufacturing and use thereof.
摘要:
A semiconductor light-emitting element is provided which has a structure that does not complicate a fabrication process, can be formed in high precision and does not invite any degradation of crystallinity. A light-emitting element is formed, which includes a selective crystal growth layer formed by selectively growing a compound semiconductor of a Wurtzite type, a clad layer of a first conduction type, an active layer and a clad layer of a second conduction type, which are formed on the selective crystal growth layer wherein the active layer is formed so that the active layer extends in parallel to different crystal planes, the active layer is larger in size than a diffusion length of a constituent atom of a mixed crystal, or the active layer has a difference in at least one of a composition and a thickness thereof, thereby forming the active layer having a number of light-emitting wavelength regions whose emission wavelengths differ from one another. The element is so arranged that an electric current or currents are chargeable into the number of light-emitting wavelength regions. Because of the structure based on the selective growth, the band gap energy varies within the same active layer, thereby forming an element or device in high precision without complicating a fabrication process.
摘要:
Semiconductor light emitting devices are provided. The semiconductor light emitting device includes a base body, a selection mask having a stripe-shaped opening portion, the selection mask being formed on the base body, a semiconductor layer formed by selective growth from the opening portion in such a manner as to have a ridge line substantially parallel to long-sides of the opening portion, and a first conductive type cladding layer, an active layer, and a second conductive type cladding layer, which are formed on the semiconductor layer.
摘要:
Semiconductor light emitting devices are provided. The semiconductor light emitting device includes a base body, a selection mask having a stripe-shaped opening portion, the selection mask being formed on the base body, a semiconductor layer formed by selective growth from the opening portion in such a manner as to have a ridge line substantially parallel to long-sides of the opening portion, and a first conductive type cladding layer, an active layer, and a second conductive type cladding layer, which are formed on the semiconductor layer.
摘要:
A semiconductor light emitting element, manufacturing method thereof, integrated semiconductor light emitting device, manufacturing method thereof, illuminating device, and manufacturing method thereof are provided. An n-type GaN layer is grown on a sapphire substrate, and a growth mask of SiN, for example, is formed thereon. On the n-type GaN layer exposed through an opening in the growth mask, a six-sided steeple-shaped n-type GaN layer is selectively grown, which has inclined crystal planes each composed of a plurality of crystal planes inclined from the major surface of the sapphire substrate by different angles of inclination to exhibit a convex plane as a whole. On the n-type GaN layer, an active layer and a p-type GaN layer are grown to make a light emitting element structure. Thereafter, a p-side electrode and an n-side electrode are formed.
摘要:
Semiconductor light emitting devices and methods of producing same are provided. The semiconductor light emitting devices include a substrate that has a surface including a difference-in-height portion composed of, for example, a wurtzite compound. A crystal growth layer is formed in the substrate surface wherein at least a portion of which is oriented along an inclined plane with respect to a principal plane of the substrate. The semiconductor device includes a first conductive layer, an active layer and a second conductive layer formed on the crystal layer in a stacked arrangement and oriented along the inclined place.
摘要:
Semiconductor light emitting devices and methods of producing same are provided. The semiconductor light emitting devices include a substrate that has a surface including a difference-in-height portion composed of, for example, a wurtzite compound. A crystal growth layer is formed in the substrate surface wherein at least a portion of which is oriented along an inclined plane with respect to a principal plane of the substrate. The semiconductor device includes a first conductive layer, an active layer and a second conductive layer formed on the crystal layer in a stacked arrangement and oriented along the inclined place.
摘要:
A crystal foundation having dislocations is used to obtain a crystal film of low dislocation density, a crystal substrate, and a semiconductor device. One side of a growth substrate (11) is provided with a crystal layer (13) with a buffer layer (12) in between. The crystal layer (13) has spaces (13a), (13b) in an end of each threading dislocation D1 elongating from below. The threading dislocation D1 is separated from the upper layer by the spaces (13a), (13b), so that each threading dislocation D1 is blocked from propagating to the upper layer. When the displacement of the threading dislocation D1 expressed by Burgers vector is preserved to develop another dislocation, the spaces (13a), (13b) vary the direction of its displacement. As a result, the upper layer above the spaces (13a), (13b) turns crystalline with a low dislocation density.