摘要:
Human NADK genes are identified as modulators of branching morphogenesis, and thus are therapeutic targets for disorders associated with defective branching morphogenesis function. Methods for identifying modulators of branching morpho-genesis, comprising screening for agents that modulate the activity of NADK are provided.
摘要:
Human CDKL1 genes are identified as modulators of branching morphogenesis, and thus are therapeutic targets for disorders associated with defective branching morphogenesis function. Methods for identifying modulators of branching morphogenesis, comprising screening for agents that modulate the activity of CDKL1 are provided.
摘要:
Human MAPK7 genes are identified as modulators of branching morphogenesis, and thus are therapeutic targets for disorders associated with defective branching morphogenesis function. Methods for identifying modulators of branching morphogenesis, comprising screening for agents that modulate the activity of MAPK7 are provided.
摘要:
Human MYLK genes are identified as modulators of branching morphogenesis, and thus are therapeutic targets for disorders associated with defective branching morphogenesis function. Methods for identifying modulators of branching morphogenesis, comprising screening for agents that modulate the activity of MYLK are provided.
摘要:
Human MYLK genes are identified as modulators of branching morphogenesis, and thus are therapeutic targets for disorders associated with defective branching morphogenesis function. Methods for identifying modulators of branching morphogenesis, comprising screening for agents that modulate the activity of MYLK are provided.
摘要:
Human MBM genes are identified as modulators of branching morphogenesis, and thus are therapeutic targets for disorders associated with defective branching morphogenesis function. Methods for identifying modulators of branching morphogenesis, comprising screening for agents that modulate the activity of MBM are provided.
摘要:
Tandem pore domain weak inward rectifying K+ (TWIK) channel nucleic acids and proteins that have been isolated from Drosophila melanogaster and Leptinotarsa are described. The TWIK channel nucleic acids and proteins can be used to genetically modify metazoan invertebrate organisms, such as insects, coelomates, and pseudocoelomates, or cultured cells, resulting in TWIK channel expression or mis-expression. The genetically modified organisms or cells can be used in screening assays to identify candidate compounds which are potential pesticidal agents or therapeutics that interact with TWIK channel proteins. They can also be used in methods for studying TWIK channel activity and identifying other genes that modulate the function of, or interact with, the TWIK channel gene.
摘要:
Specific monomer domains and multimers comprising the monomer domains are provided. Methods, compositions, libraries and cells that express one or more library member, along with kits and integrated systems, are also included in the present invention.