摘要:
A method of depositing a thin film on a substrate in a semiconductor device using Atomic Layer Deposition (ALD) process parameters exposes the substrate to at least one adherent material in a quantity sufficient for the material to adsorb onto the substrate and thereby form an initiation layer. The initiation layer presents at least one first reactive moiety which is then chemically reacted with at least one first reaction material using atomic layer deposition conditions to form a second reactive moiety. The second reactive moiety is then chemically reacted with at least one second reaction material under process conditions sufficient to form a reaction layer over the initiation layer. The process may be repeated to form successive reaction layers over the initiation layer. The adherent material constituting the initiation layer is preferably one which is not substantially degraded by the atomic layer deposition parameters. The initiation layer together with one or more reaction layer(s) constitutes the final film.
摘要:
A method of depositing a thin film on a substrate in a semiconductor device using Atomic Layer Deposition (ALD) process parameters exposes the substrate to at least one adherent material in a quantity sufficient for the material to adsorb onto the substrate and thereby form an initiation layer. The initiation layer presents at least one first reactive moiety which is then chemically reacted with at least one first reaction material using atomic layer deposition conditions to form a second reactive moiety. The second reactive moiety is then chemically reacted with at least one second reaction material under process conditions sufficient to form a reaction layer over the initiation layer. The process may be repeated to form successive reaction layers over the initiation layer. The adherent material constituting the initiation layer is preferably one which is not substantially degraded by the atomic layer deposition parameters. The initiation layer together with one or more reaction layer(s) constitutes the final film.
摘要:
A method of forming a layer on a micro-device workpiece includes dispensing a first pulse of a first precursor at a first region of the workpiece to flow toward a second region of the workpiece. The second region of the workpiece is located radially outward relative to the first region of the workpiece. The embodiment of this method further includes dispensing a first pulse of a purge gas at the first region of the workpiece to flow toward the second region of the workpiece after terminating the first pulse of the first precursor. Additionally, this embodiment also includes dispensing a second pulse of a first precursor at the second region of the workpiece to flow radially outward concurrently with dispensing the first pulse of a purge gas in the first region of the workpiece. The first pulse of the purge gas is terminated at the first region of the workpiece, and the second pulse of the first precursor is terminated at the second region. At this stage, the method further includes dispensing a first pulse of a second precursor at the first region of the workpiece to flow radially outward toward the second region, and dispensing a second pulse of the purge gas at the second region of the workpiece to flow radially outward concurrently with the first pulse of the second precursor in the first region. A single cycle of the process can further include dispensing a third pulse of the purge gas onto the first region of the workpiece to flow radially outward after terminating the first pulse of the second precursor, and concurrently dispensing a second pulse of the second precursor in the second region to flow radially outward.
摘要:
A method of depositing a thin film on a substrate in a semiconductor device using Atomic Layer Deposition (ALD) process parameters exposes the substrate to at least one adherent material in a quantity sufficient for the material to adsorb onto the substrate and thereby form an initiation layer. The initiation layer presents at least one first reactive moiety which is then chemically reacted with at least one first reaction material using atomic layer deposition conditions to form a second reactive moiety. The second reactive moiety is then chemically reacted with at least one second reaction material under process conditions sufficient to form a reaction layer over the initiation layer. The process may be repeated to form successive reaction layers over the initiation layer. The adherent material constituting the initiation layer is preferably one which is not substantially degraded by the atomic layer deposition parameters. The initiation layer together with one or more reaction layer(s) constitutes the final film.
摘要:
A method of depositing a thin film on a substrate in a semiconductor device using Atomic Layer Deposition (ALD) process parameters exposes the substrate to at least one adherent material in a quantity sufficient for the material to adsorb onto the substrate and thereby form an initiation layer. The initiation layer presents at least one first reactive moiety which is then chemically reacted with at least one first reaction material using atomic layer deposition conditions to form a second reactive moiety. The second reactive moiety is then chemically reacted with at least one second reaction material under process conditions sufficient to form a reaction layer over the initiation layer. The process may be repeated to form successive reaction layers over the initiation layer. The adherent material constituting the initiation layer is preferably one which is not substantially degraded by the atomic layer deposition parameters. The initiation layer together with one or more reaction layer(s) constitutes the final film.
摘要:
A method of depositing a thin film on a substrate in a semiconductor device using Atomic Layer Deposition (ALD) process parameters exposes the substrate to at least one adherent material in a quantity sufficient for the material to adsorb onto the substrate and thereby form an initiation layer. The initiation layer presents at least one first reactive moiety which is then chemically reacted with at least one first reaction material using atomic layer deposition conditions to form a second reactive moiety. The second reactive moiety is then chemically reacted with at least one second reaction material under process conditions sufficient to form a reaction layer over the initiation layer. The process may be repeated to form successive reaction layers over the initiation layer. The adherent material constituting the initiation layer is preferably one which is not substantially degraded by the atomic layer deposition parameters. The initiation layer together with one or more reaction layer(s) constitutes the final film.
摘要:
Self-assembling materials, such as block copolymers, are used as mandrels for pitch multiplication. The copolymers are deposited over a substrate and directed to self-assemble into a desired pattern. One of the blocks forming the block copolymers is selectively removed. The remaining blocks are used as mandrels for pitch multiplication. Spacer material is blanket deposited over the blocks. The spacer material is subjected to a spacer etch to form spacers on sidewalls of the mandrels. The mandrels are selectively removed to leave free-standing spacers. The spacers may be used as pitch-multiplied mask features to define a pattern in an underlying substrate.
摘要:
Methods, devices, and systems are provided for a select device that can include a semiconductive stack of at least one semiconductive material formed on a first electrode, where the semiconductive stack can have a thickness of about 700 angstroms (Å) or less. Each of the at least one semiconductive material can have an associated band gap of about 4 electron volts (eV) or less and a second electrode can be formed on the semiconductive stack.
摘要:
A method for creating structures in a semiconductor assembly is provided. The method includes etching apertures into a dielectric layer and applying a polymer layer over the dielectric layer. The polymer layer is applied uniformly and fills the apertures at different rates depending on the geometry of the apertures, or on the presence or absence of growth accelerating material. The polymer creates spacers for the etching of additional structure in between the spacers. The method is capable of achieving structures smaller than current lithography techniques.
摘要:
A method of forming a nonvolatile memory cell includes forming a first electrode having a first current conductive material and a circumferentially self-aligned second current conductive material projecting elevationally outward from the first current conductive material. The second current conductive material is different in composition from the first current conductive material. A programmable region is formed over the first current conductive material and over the projecting second current conductive material of the first electrode. A second electrode is formed over the programmable region. In one embodiment, the programmable region is ion conductive material, and at least one of the first and second electrodes has an electrochemically active surface directly against the ion conductive material. Other method and structural aspects are disclosed.