摘要:
The present invention generally provides a method for forming a dielectric barrier with lowered dielectric constant, improved etching resistivity and good barrier property. One embodiment provides a method for processing a semiconductor substrate comprising flowing a precursor to a processing chamber, wherein the precursor comprises silicon-carbon bonds and carbon-carbon bonds, and generating a low density plasma of the precursor in the processing chamber to form a dielectric barrier film having carbon-carbon bonds on the semiconductor substrate, wherein the at least a portion of carbon-carbon bonds in the precursor is preserved in the low density plasma and incorporated in the dielectric barrier film.
摘要:
The present invention generally provides a method for forming a dielectric barrier with lowered dielectric constant, improved etching resistivity and good barrier property. One embodiment provides a method for processing a semiconductor substrate comprising flowing a precursor to a processing chamber, wherein the precursor comprises silicon-carbon bonds and carbon-carbon bonds, and generating a low density plasma of the precursor in the processing chamber to form a dielectric barrier film having carbon-carbon bonds on the semiconductor substrate, wherein the at least a portion of carbon-carbon bonds in the precursor is preserved in the low density plasma and incorporated in the dielectric barrier film.
摘要:
The present invention generally provides a method for forming multilevel interconnect structures, including multilevel interconnect structures that include an air gap. One embodiment provides a method for forming conductive lines in a semiconductor structure comprising forming trenches in a first dielectric layer, wherein air gaps are to be formed in the first dielectric layer, depositing a conformal dielectric barrier film in the trenches, wherein the conformal dielectric barrier film comprises a low k dielectric material configured to serve as a barrier against a wet etching chemistry used in forming the air gaps in the first dielectric layer, depositing a metallic diffusion barrier film over the conformal low k dielectric layer, and depositing a conductive material to fill the trenches.
摘要:
A method of processing a substrate including depositing a low dielectric constant film comprising silicon, carbon, and oxygen on the substrate and depositing an oxide rich cap on the low dielectric constant film is provided. The low dielectric constant film is deposited from a gas mixture comprising an organosilicon compound and an oxidizing gas in the presence of RF power in a chamber. The RF power and a flow of the organosilicon compound and the oxidizing gas are continued in the chamber after the deposition of the low dielectric constant film at flow rates sufficient to deposit an oxide rich cap on the low dielectric constant film.
摘要:
Methods are provided for processing a substrate comprising a bilayer barrier film thereon. In one aspect, a method comprises depositing a first barrier layer, depositing a second barrier layer on the first barrier layer, depositing a dielectric layer on the bilayer barrier film formed by the first barrier layer and the second barrier layer, and ultraviolet curing the dielectric layer. In another aspect, a method comprises depositing a first barrier layer, depositing a second barrier layer on the first barrier layer, depositing a dielectric layer on the bilayer barrier film formed by the first barrier layer and the second barrier layer, and curing the dielectric layer with an electron beam treatment.
摘要:
Stress of a silicon nitride layer may be enhanced by deposition at higher temperatures. Employing an apparatus that allows heating of a substrate to substantially greater than 400° C. (for example a heater made from ceramic rather than aluminum), the silicon nitride film as-deposited may exhibit enhanced stress allowing for improved performance of the underlying MOS transistor device. In accordance with alternative embodiments, a deposited silicon nitride film is exposed to curing with ultraviolet (UV) radiation at an elevated temperature, thereby helping remove hydrogen from the film and increasing film stress. In accordance with still other embodiments, a silicon nitride film is formed utilizing an integrated process employing a number of deposition/curing cycles to preserve integrity of the film at the sharp corner of the underlying raised feature. Adhesion between successive layers may be promoted by inclusion of a post-UV cure plasma treatment in each cycle.
摘要:
A method for forming a structure includes forming at least one feature across a surface of a substrate. A nitrogen-containing dielectric layer is formed over the at least one feature. A first portion of the nitrogen-containing layer on at least one sidewall of the at least one feature is removed at a first rate and a second portion of the nitrogen-containing layer over the substrate adjacent to a bottom region of the at least one feature is removed at a second rate. The first rate is greater than the second rate. A dielectric layer is formed over the nitrogen-containing dielectric layer.
摘要:
Methods of forming boron-containing films are provided. The methods include introducing a boron-containing precursor into a chamber and depositing a network comprising boron-boron bonds on a substrate by thermal decomposition or a plasma process. The network may be post-treated to remove hydrogen from the network and increase the stress of the resulting boron-containing film. The boron-containing films have a stress between about −10 GPa and 10 GPa and may be used as boron source layers or as strain-inducing layers.
摘要:
Methods for forming boron-containing films are provided. The methods include introducing a boron-containing precursor and a nitrogen or oxygen-containing precursor into a chamber and forming a boron nitride or boron oxide film on a substrate in the chamber. In one aspect, the method includes depositing a boron-containing film and then exposing the boron-containing film to the nitrogen-containing or oxygen-containing precursor to incorporate nitrogen or oxygen into the film. The deposition of the boron-containing film and exposure of the film to the precursor may be performed for multiple cycles to obtain a desired thickness of the film. In another aspect, the method includes reacting the boron-containing precursor and the nitrogen-containing or oxygen-containing precursor to chemically vapor deposit the boron nitride or boron oxide film.
摘要:
A method for forming a structure includes forming at least one feature across a surface of a substrate. A nitrogen-containing dielectric layer is formed over the at least one feature. A first portion of the nitrogen-containing layer on at least one sidewall of the at least one feature is removed at a first rate and a second portion of the nitrogen-containing layer over the substrate adjacent to a bottom region of the at least one feature is removed at a second rate. The first rate is greater than the second rate. A dielectric layer is formed over the nitrogen-containing dielectric layer.