摘要:
A bonding pad structure is disclosed, which is composed of two bonding pad units that are symmetrically disposed with respect to an axial line. Each bonding pad units is further composed of at least two bonding pads, i.e. each bonding pad unit is composed of at least one first bonding pad and at least one second bonding pad. In an embodiment, the first bonding pad is arranged next to the axial line and the second bonding pad is arranged at a side of the corresponding first bonding pad away from the axial line while enabling the first bonding pad and the corresponding second bonding pad to be interconnected to each other by a first neck portion. Thereby, a plurality of solder areas of different sizes can be formed by the interconnecting of the at least two bonding pad units that can be used for soldering electronic components of different sizes.
摘要:
A bonding pad structure is disclosed, which is composed of two bonding pad units that are symmetrically disposed with respect to an axial line. Each bonding pad units is further composed of at least two bonding pads, i.e. each bonding pad unit is composed of at least one first bonding pad and at least one second bonding pad. In an embodiment, the first bonding pad is arranged next to the axial line and the second bonding pad is arranged at a side of the corresponding first bonding pad away from the axial line while enabling the first bonding pad and the corresponding second bonding pad to be interconnected to each other by a first neck portion. Thereby, a plurality of solder areas of different sizes can be formed by the interconnecting of the at least two bonding pad units that can be used for soldering electronic components of different sizes.
摘要:
An optoelectronic device has a substrate and a first window layer on the substrate with a first sheet resistance, a first thickness, and a first impurity concentration. A second window layer has a second sheet resistance, a second thickness, and a second impurity concentration. A semiconductor system is between the first window layer and the second window layer. The second window layer has a semiconductor material different from the semiconductor system, and the second sheet resistance is greater than the first sheet resistance. A method for manufacturing is provided, having the steps of providing a substrate, forming a semiconductor system on the substrate, and forming a window layer on the semiconductor system. The window layer has a semiconductor material different from the semiconductor system. Selectively removing the window layer forms a width difference greater than 1 micron between the window layer and semiconductor system.
摘要:
A semiconductor light-emitting device having a thinned structure comprises a thinned structure formed between a semiconductor light-emitting structure and a carrier. The manufacturing method comprises the steps of forming a semiconductor light-emitting structure above a substrate; attaching the semiconductor light-emitting structure to a support; thinning the substrate to form a thinned structure; forming or attaching a carrier to the thinned substrate; and removing the support.
摘要:
The present invention is related to a light-emitting device. The present invention illustrates a vertical light-emitting device in one embodiment, comprising the following elements: a conductive substrate includes a through-hole, a patterned semiconductor structure disposed on a first surface of the substrate, a first bonding pad and a second bonding pad disposed on a second surface of the substrate, a conductive line passing through the through-hole connecting electrically the semiconductor structure layer, and an insulation layer on at least one sidewall of the through-hole insulates the conductive line form the substrate. The present invention illustrates a horizontal light-emitting device in another embodiment, comprising the following elements: a substrate includes a first tilted sidewall, a patterned semiconductor structure disposed on a first surface of the substrate, a first conductive line is disposed on at least the first tilted sidewall of the substrate and connecting electrically the patterned semiconductor structure.
摘要:
An activity detection circuit for a storage device including a sampling module, a logic module, and an indication module. The sampling module is for detecting a state interface of the storage device by a reference signal. The logic module is for determining a state of the storage device according to a detection result generated by the sampling module. The indication module includes a light emitting device, wherein when the storage device is in a connected state, the light emitting device emits constant light, and when the storage device is in a read/write state, the light emitting device emits flickering light. The present invention also provides a storage module including a storage device, a connection port and the activity detection circuit described above.
摘要:
A small size ultra-wideband (UWB) antenna comprises a radiation element, a dielectric substrate, and a dielectric element. The radiation element includes a radiation conductor, a matching element, and an antenna feeding element. A signal feeding element and a conductor plane are formed on the upper and lower surfaces of the dielectric substrate, respectively. With the matching element on the radiation conductor, the current distribution on the conductor plane is changed so that the antenna achieves a sufficient extension for both high and low impedance bandwidths. The UWB antenna is also suitable for surface-mountable fabrication process, and which effectively reduce the manufacturing cost. The antenna has the advantages of small size, simple structure, and an impedance bandwidth of 7.97 GHz.
摘要:
A photoelectronic device including a carrier, a light-emitting component mounted on the carrier; a patterned structure deposited on the carrier and around the light-emitting component; and a transparent sealing structure formed above the light-emitting component. The patterned structure mentioned above can cause the transparent sealing structure to be focused above the light-emitting component, and restrained in the patterned structure. The transparent sealing structure with predetermined proportional configuration is obtained by controlling the quantity of the transparent sealing structure. Therefore light efficiency of the photoelectronic device can be greatly improved.
摘要:
A semiconductor light-emitting device having a thinned structure comprises a thinned structure formed between a semiconductor light-emitting structure and a carrier. The manufacturing method comprises the steps of forming a semiconductor light-emitting structure above a substrate; attaching the semiconductor light-emitting structure to a support; thinning the substrate to form a thinned structure; forming or attaching a carrier to the thinned substrate; and removing the support.
摘要:
An optoelectronic device has a substrate and a first window layer on the substrate with a first sheet resistance, a first thickness, and a first impurity concentration. A second window layer has a second sheet resistance, a second thickness, and a second impurity concentration. A semiconductor system is between the first window layer and the second window layer. The second window layer has a semiconductor material different from the semiconductor system, and the second sheet resistance is greater than the first sheet resistance. A method for manufacturing is provided, having the steps of providing a substrate, forming a semiconductor system on the substrate, and forming a window layer on the semiconductor system. The window layer has a semiconductor material different from the semiconductor system. Selectively removing the window layer forms a width difference greater than 1 micron between the window layer and semiconductor system.